Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.220-222
/
2006
현재 마이크로어레이 기술은 대량의 유전자 발현 데이터 특히 암과 관련한 데이터들을 쏟아내고 있다. 이 데이터를 기반으로 암의 종류에 따른 유전자들의 차별적 발현 양상을 분석하고 발현량의 변화가 두드러지는 유전자들에 기반하여 암을 분별할 수 있는 분류 모델을 구축한 후, 이것을 암을 진단하거나 예측하는데 이용할 수 있다. 본 논문에서는 마이크로어레이 데이터를 사용해 특징추출방법과 분류를 위한 Naive Bayes, k-Nearest Neighborhood, Decision Tree, Support Vector Machine, Neural Network 알고리즘을 이용하여 최적의 조합을 찾고 어떤 알고리즘이 가장 효과적인지 실험을 통해 분석해보고 성능평가 하는 것을 목표로 한다.
Piao, Yongjun;Hiep, Vu Quang;Erdenetuya, Namsrai;Piao, Minghao;Ryu, Keun-Ho
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.154-156
/
2012
암 분류를 위한 마이크로어레이 데이터로부터의 유전자 선택은 최근 각광을 받고 있는 연구분야이다. 마이크로어레이 데이터는 적은 샘플 수에 비해 대규모의 유전자로 구성된다. 그렇기 때문에 분류의 정확도를 높이기 위하여 대상 암과 관련된 유전자만 선택할 수 있는 차원 축소 기법이 필요하다. 따라서 본 논문에서는 Symmetrical Uncertainty와 Support Vector Machine (SVM)을 이용한 하이브리드 속성선택 기법을 제안하였다. 제안한 기법은 실험 결과를 통해 다른 속성 선택 기법보다 좋은 성능을 보여주었다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1117-1120
/
2013
사람의 질병은 여러 요인의 복합적인 작용으로 발생하는데 이 중 유전적인 요인에는 유전자 간의 상호작용을 들 수 있다. 마이크로어레이(Microarray) 데이터로부터 유전자의 활성화 및 억제 관계를 밝히려는 다양한 시도는 계속되어왔다. 그러나 마이크로어레이 자체가 갖는 불안정성과 실험조건 수의 제약이 커다란 장애가 되어 왔다. 이에 생물학적 사전 지식을 포함하는 방법들이 제안되었다. 본 논문에서는 질병과 관련된 유전자 간의 상호작용의 집합을 질병 모듈이라 정의하고 이를 유전자 알고리즘으로 학습한 베이지안 네트워크(Bayesian network)로 추론하는 방법을 제안한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.9
/
pp.2032-2037
/
2011
Marker genes are defined as genes in which the expression level characterizes a specific experimental condition. Such genes in which the expression levels differ significantly between different groups are highly informative relevant to the studied phenomenon. In this paper, first the system can detect marker genes that are selected by ranking genes according to statistics after normalizing data with methods that are the most widely used among several normalization methods proposed the while, And it compare and analyze a performance of each of normalization methods with mult-perceptron neural network layer. The Result that apply Multi-Layer perceptron algorithm at Microarray data set including eight of marker gene that are selected using ANOVA method after Lowess normalization represent the highest classification accuracy of 99.32% and the lowest prediction error estimate.
Communications for Statistical Applications and Methods
/
v.16
no.3
/
pp.397-408
/
2009
The development of microarray technology makes possible to analyse many thousands of genes simultaneously. While it is important to test each gene whether it shows changes in expression associated with a phenotype, human diseases are thought to occur through the interactions of multiple genes within a same functional cafe-gory. Recent research interests aims to directly test the behavior of sets of functionally related genes, instead of focusing on single genes. Gene set enrichment analysis(GSEA), significance analysis of microarray to gene-set analysis(SAM-GS) and parametric analysis of gene set enrichment(PAGE) have been applied widely as a tool for gene-set analyses. We describe their problems and propose an alternative method using a parametric analysis by adopting normal score transformation of gene expression values. Performance of the newly derived method is compared with previous methods on three real microarray datasets.
Time course gene expression data is a large amount of data observed over time in microarray experiments. This data can also simultaneously identify the level of gene expression. However, the experiment process is complex, resulting in frequent missing values due to various causes. In this paper, we propose a pattern consistency index adaptive nearest neighbors as a method of missing value imputation. This method combines the adaptive nearest neighbors (ANN) method that reflects local characteristics and the pattern consistency index that considers consistent degree for gene expression between observations over time points. We conducted a Monte Carlo simulation study to evaluate the usefulness of proposed the pattern consistency index adaptive nearest neighbors (PANN) method for two yeast time course data.
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.7
/
pp.1243-1248
/
2008
As development in technology of bioinformatics recently mates it possible to operate micro-level experiments, we can observe the expression pattern of total genome through on chip and analyze the interactions of thousands of genes at the same time. In this thesis, we used CDNA microarrays of 3840 genes obtained from neuronal differentiation experiment of cortical stem cells on white mouse with cancer. It analyzed and compared performance of each of the experiment result using existing DT, NB, SVM and multi-perceptron neural network classifier combined the similar scale combination method after constructing class classification model by extracting significant gene list with a similar scale combination method proposed in this paper through normalization. Result classifying in Multi-Perceptron neural network classifier for selected 200 genes using combination of PC(Pearson correlation coefficient) and ED(Euclidean distance coefficient) represented the accuracy of 98.84%, which show that it improve classification performance than case to experiment using other classifier.
Park, Chan-Ho;Cho, Sung-Bae;Shin, Ji-Hye;Kim, Sang-Cheol;Seo, Min-Young;Yang, Sang-Hwa;Rha, Sun-Young;Chung, Hyun-Cheol
Proceedings of the Korean Society for Bioinformatics Conference
/
2003.10a
/
pp.139-146
/
2003
암의 조기 발견 및 예후 예측을 위하여 마이크로어레이 데이터를 이용할 수 있다. 하지만 이를 분석하기 위해서는 40${\mu}g$ 이상의 RNA 샘플이 필요한데, 실제 임상 시료를 사용하는 경우 요구되는 충분한 양을 얻기가 어려운 단점이 있다. 따라서 소량의 RNA 샘플을 채취한 후 PCR 증폭 과정을 통하여 요구되는 양의 샘플을 얻을 수 있는 RNA 증폭 방법이 시도되고 있고, 이를 마이크로어레이 실험에 이용하기 위해서는 증폭 전후의 유사성이 보장되어야 한다. 본 논문에서는 증폭 RNA와 전체 RNA의 유사성을 비교하기 위한 새로운 방법으로 엔트로피 기반의 방법을 제시한다. 아울러 다양한 조건에 따라서 엔트로피값을 측정하여 세포주와 조직에서 엔트로피 값이 어떻게 사용될 수 있는지 체계적인 분석을 하였다.
DNA microarray 기술은 동시적으로 수천 개의 유전자의 발현상황을 탐색할 수 있다. 이 기술을 통해 얻어진 자료는 분석하기에 앞서 전처리 과정으로 배경보정 (background correction), 표준화 (normalization) 그리고 요약 (summarization)이 필요하다. 표준화란 microarray 실험에서 기술상의 문제로 첨가되는 일정한 잡음을 인식, 제거하기 위해 필요한 기법으로 그 동안 여러 방법들이 제시되어 왔다. 또한 마이크로어레이 자료의 분석을 위한 요약 방법으로도 많은 방법들이 연구되었다. 본 글에서는 표준화 방법들과 요약 방법들의 특성을 분석, 비교하고자 한다.
To investigate whether isoflavone genistein and daidzein could affect cancer cell viability, human colorectal HCT116 cells were incubated with genistein or daidzein in a dose-dependent manner. Genistein decreased cancer cell viability in a dose-dependent manner, whereas daidzein did not show dramatic cytotoxic effects. We also found that 71 genes were up-regulated more than 2-fold, whereas 64 genes were down-regulated more than 2-fold with 24 hr of $50{\mu}M$ genistein treatment by our previous microarray data. Among the up-regulated genes, we selected 3 genes (DKK1, ATF3 and NAG-1) and performed RT-PCR to confirm microarray data. The results of RT-PCR were highly correlated with those of the microarray experiment. In addition, we investigated whether a combination treatment of genistein and daidzein could affect cancer cell viability. Surprisingly, the combination treatment did show synergistic cytotoxic effects detected by MTS assay. The results of RT-PCR and real-time PCR indicate that a combination of genistein and daidzein can synergistically induce NAG-1 expression in HCT116 cells. This result implies that NAG-1 induction is highly associated with synergistic cytotoxic effects induced by a combination treatment of genistein and daidzein. Overall, these results may provide a clue in explaining the anti-cancer activity of soy bean in human colorectal cancer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.