• Title/Summary/Keyword: 마이닝

Search Result 2,817, Processing Time 0.03 seconds

A Study on the Landscape Cognition of Wind Power Plant in Social Media (소셜미디어에 나타난 풍력발전시설의 경관 인식 연구)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.69-79
    • /
    • 2022
  • This study aims to assess the current understanding of the landscape of wind power facilities as renewable energy sources that supply sightseeing, tourism, and other opportunities. Therefore, social media data related to the landscape of wind power facilities experienced by visitors from different regions was analyzed. The analysis results showed that the common characteristics of the landscape of wind power facilities are based on the scale of wind power facilities, the distance between overlook points of wind power facilities, the visual openness of the wind power facilities from the overlook points, and the terrain where the wind power facilities are located. In addition, the preference for wind power facilities is higher in places where the shape of wind power facilities and the surrounding landscape can be clearly seen- flat ground or the sea are considered better landscapes. Negative keywords about the landscape appear on Gade Mountain in Taibai, Meifeng Mountain in Taibai, Taiqi Mountain, and Gyeongju Wind Power Generation Facilities on Gyeongshang Road in Gangwon. The keyword 'negation' occurs when looking at wind power facilities at close range. Because of the high angle of the view, viewers can feel overwhelmed seeing the size of the facility and the ridge simultaneously, feeling psychological pressure. On the contrary, positive landscape adjectives are obtained from wind power facilities on flat ground or the sea. Visitors think that the visual volume of the landscape is fully ensured on flat ground or the sea, and it is a symbolic element that can represent the site. This study analyzes landscape awareness based on the opinions of visitors who have experienced wind power facilities. However, wind power facilities are built in different areas. Therefore, landscape characteristics are different, and there are many variables, such as viewpoints and observers, so the research results are difficult to popularize and have limitations. In recent years, landscape damage due to the construction of wind power facilities has become a hot issue, and the domestic methods of landscape evaluation of wind power facilities are unsatisfactory. Therefore, when evaluating the landscape of wind power facilities, the scale of wind power facilities, the inherent natural characteristics of the area where wind power facilities are set up, and the distance between wind power facilities and overlook points are important elements to consider. In addition, wind power facilities are set in the natural environment, which needs to be protected. Therefore, from the landscape perspective, it is necessary to study the landscape of wind power facilities and the surrounding environment.

A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles (산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로)

  • WonHee Kim;YoungOk Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.287-316
    • /
    • 2023
  • As global energy crisis and the COVID-19 pandemic have emerged as social issues, there is a growing demand for companies to move away from profit-centric business models and embrace sustainable management that balances environmental, social, and governance (ESG) factors. ESG activities of companies vary across industries, and industry-specific weights are applied in ESG evaluations. Therefore, it is important to develop strategic management approaches that reflect the characteristics of each industry and the importance of each ESG factor. Additionally, with the stance of strengthened focus on ESG disclosures, specific guidelines are needed to identify and report on sustainable management activities of domestic companies. To understand corporate sustainability strategies, analyzing ESG reports and news articles by industry can help identify strategic characteristics in specific industries. However, each company has its own unique strategies and report structures, making it difficult to grasp detailed trends or action items. In our study, we analyzed ESG reports (2019-2021) and news articles (2019-2022) of six companies in the 'Finance,' 'Manufacturing,' and 'IT' sectors to examine the sustainability strategies of leading domestic ESG companies. Text mining techniques such as keyword frequency analysis and topic modeling were applied to identify industry-specific, ESG element-specific management strategies and issues. The analysis revealed that in the 'Finance' sector, customer-centric management strategies and efforts to promote an inclusive culture within and outside the company were prominent. Strategies addressing climate change, such as carbon neutrality and expanding green finance, were also emphasized. In the 'Manufacturing' sector, the focus was on creating sustainable communities through occupational health and safety issues, sustainable supply chain management, low-carbon technology development, and eco-friendly investments to achieve carbon neutrality. In the 'IT' sector, there was a tendency to focus on technological innovation and digital responsibility to enhance social value through technology. Furthermore, the key issues identified in the ESG factors were as follows: under the 'Environmental' element, issues such as greenhouse gas and carbon emission management, industry-specific eco-friendly activities, and green partnerships were identified. Under the 'Social' element, key issues included social contribution activities through stakeholder engagement, supporting the growth and coexistence of members and partner companies, and enhancing customer value through stable service provision. Under the 'Governance' element, key issues were identified as strengthening board independence through the appointment of outside directors, risk management and communication for sustainable growth, and establishing transparent governance structures. The exploration of the relationship between ESG disclosures in reports and ESG issues in news articles revealed that the sustainability strategies disclosed in reports were aligned with the issues related to ESG disclosed in news articles. However, there was a tendency to strengthen ESG activities for prevention and improvement after negative media coverage that could have a negative impact on corporate image. Additionally, environmental issues were mentioned more frequently in news articles compared to ESG reports, with environmental-related keywords being emphasized in the 'Finance' sector in the reports. Thus, ESG reports and news articles shared some similarities in content due to the sharing of information sources. However, the impact of media coverage influenced the emphasis on specific sustainability strategies, and the extent of mentioning environmental issues varied across documents. Based on our study, the following contributions were derived. From a practical perspective, companies need to consider their characteristics and establish sustainability strategies that align with their capabilities and situations. From an academic perspective, unlike previous studies on ESG strategies, we present a subdivided methodology through analysis considering the industry-specific characteristics of companies.

Asbestos Trend in Korea from 1918 to 2027 Using Text Mining Techniques in a Big Data Environment (빅데이터환경에서 텍스트마이닝 기법을 활용한 한국의 석면 트렌드 (1918년~2027년))

  • Yul Roh;Hyeonyi Jeong;Byungno Park;Chaewon Kim;Yumi Kim;Mina Seo;Haengsoo Shin;Hyunwook Kim;Yeji Sung
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.457-473
    • /
    • 2023
  • Asbestos has been produced, imported and used in various industries in Korea over the past decades. Since asbestos causes fatal diseases such as malignant mesothelioma and lung cancer, the use of asbestos has been generally banned in Korea since 2009. However, there are still many asbestos-containing materials around us, and safe management is urgently needed. This study aims to examine asbestos-related trend changes using major asbestos-related keywords based on the asbestos trend analysis using big data for the past 32 years (1991 to 2022) in Korea. In addition, we reviewed both domestic trends related to the production, import, and use of asbestos before 1990 and asbestos-related policies from 2023 to 2027. From 1991 to 2000, main keywords related to asbestos were research, workers, carcinogens, and the environment because the carcinogenicity of asbestos was highlighted due to domestic production, import, and use of asbestos. From 2001 to 2010, the main keywords related to asbestos were lung cancer, litigation, carcinogens, exposure, and companies because lawsuits were initiated in the US and Japan in relation to carcinogenicity due to asbestos. From 2011 to 2020, the high ranking keywords related to asbestos were carcinogen, baseball field, school, slate, building, and abandoned asbestos mine due to the seriousness of the asbestos problem in Korea. From 2021 to present (2023), the main search keywords related to asbestos such as school, slate (asbestos cement), buildings, landscape stone, environmental impact assessment, apartment, and cement appeared.

Investigating Topics of Incivility Related to COVID-19 on Twitter: Analysis of Targets and Keywords of Hate Speech (트위터에서의 COVID-19와 관련된 반시민성 주제 탐색: 혐오 대상 및 키워드 분석)

  • Kim, Kyuli;Oh, Chanhee;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.331-350
    • /
    • 2022
  • This study aims to understand topics of incivility related to COVID-19 from analyzing Twitter posts including COVID-19-related hate speech. To achieve the goal, a total of 63,802 tweets that were created between December 1st, 2019, and August 31st, 2021, covering three targets of hate speech including region and public facilities, groups of people, and religion were analyzed. Frequency analysis, dynamic topic modeling, and keyword co-occurrence network analysis were used to explore topics and keywords. 1) Results of frequency analysis revealed that hate against regions and public facilities showed a relatively increasing trend while hate against specific groups of people and religion showed a relatively decreasing trend. 2) Results of dynamic topic modeling analysis showed keywords of each of the three targets of hate speech. Keywords of the region and public facilities included "Daegu, Gyeongbuk local hate", "interregional hate", and "public facility hate"; groups of people included "China hate", "virus spreaders", and "outdoor activity sanctions"; and religion included "Shincheonji", "Christianity", "religious infection", "refusal of quarantine", and "places visited by confirmed cases". 3) Similarly, results of keyword co-occurrence network analysis revealed keywords of three targets: region and public facilities (Corona, Daegu, confirmed cases, Shincheonji, Gyeongbuk, region); specific groups of people (Coronavirus, Wuhan pneumonia, Wuhan, China, Chinese, People, Entry, Banned); and religion (Corona, Church, Daegu, confirmed cases, infection). This study attempted to grasp the public's anti-citizenship public opinion related to COVID-19 by identifying domestic COVID-19 hate targets and keywords using social media. In particular, it is meaningful to grasp public opinion on incivility topics and hate emotions expressed on social media using data mining techniques for hate-related to COVID-19, which has not been attempted in previous studies. In addition, the results of this study suggest practical implications in that they can be based on basic data for contributing to the establishment of systems and policies for cultural communication measures in preparation for the post-COVID-19 era.

Text Mining of Successful Casebook of Agricultural Settlement in Graduates of Korea National College of Agriculture and Fisheries - Frequency Analysis and Word Cloud of Key Words - (한국농수산대학 졸업생 영농정착 성공 사례집의 Text Mining - 주요단어의 빈도 분석 및 word cloud -)

  • Joo, J.S.;Kim, J.S.;Park, S.Y.;Song, C.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.2
    • /
    • pp.57-72
    • /
    • 2018
  • In order to extract meaningful information from the excellent farming settlement cases of young farmers published by KNCAF, we studied the key words with text mining and created a word cloud for visualization. First, in the text mining results for the entire sample, the words 'CEO', 'corporate executive', 'think', 'self', 'start', 'mind', and 'effort' are the words with high frequency among the top 50 core words. Their ability to think, judge and push ahead with themselves is a result of showing that they have ability of to be managers or managers. And it is a expression of how they manages to achieve their dream without giving up their dream. The high frequency of words such as "father" and "parent" is due to the high ratio of parents' cooperation and succession. Also 'KNCAF', 'university', 'graduation' and 'study' are the results of their high educational awareness, and 'organic farming' and 'eco-friendly' are the result of the interest in eco-friendly agriculture. In addition, words related to the 6th industry such as 'sales' and 'experience' represent their efforts to revitalize farming and fishing villages. Meanwhile, 'internet', 'blog', 'online', 'SNS', 'ICT', 'composite' and 'smart' were not included in the top 50. However, the fact that these words were extracted without omission shows that young farmers are increasingly interested in the scientificization and high-tech of agriculture and fisheries Next, as a result of grouping the top 50 key words by crop, the words 'facilities' in livestock, vegetables and aquatic crops, the words 'equipment' and 'machine' in food crops were extracted as main words. 'Eco-friendly' and 'organic' appeared in vegetable crops and food crops, and 'organic' appeared in fruit crops. The 'worm' of eco-friendly farming method appeared in the food crops, and the 'certification', which means excellent agricultural and marine products, appeared only in the fishery crops. 'Production', which is related to '6th industry', appeared in all crops, 'processing' and 'distribution' appeared in the fruit crops, and 'experience' appeared in the vegetable crops, food crops and fruit crops. To visualize the extracted words by text mining, we created a word cloud with the entire samples and each crop sample. As a result, we were able to judge the meaning of excellent practices, which are unstructured text, by character size.

An Analysis of the Internal Marketing Impact on the Market Capitalization Fluctuation Rate based on the Online Company Reviews from Jobplanet (직원을 위한 내부마케팅이 기업의 시가 총액 변동률에 미치는 영향 분석: 잡플래닛 기업 리뷰를 중심으로)

  • Kichul Choi;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.39-62
    • /
    • 2018
  • Thanks to the growth of computing power and the recent development of data analytics, researchers have started to work on the data produced by users through the Internet or social media. This study is in line with these recent research trends and attempts to adopt data analytical techniques. We focus on the impact of "internal marketing" factors on firm performance, which is typically studied through survey methodologies. We looked into the job review platform Jobplanet (www.jobplanet.co.kr), which is a website where employees and former employees anonymously review companies and their management. With web crawling processes, we collected over 40K data points and performed morphological analysis to classify employees' reviews for internal marketing data. We then implemented econometric analysis to see the relationship between internal marketing and market capitalization. Contrary to the findings of extant survey studies, internal marketing is positively related to a firm's market capitalization only within a limited area. In most of the areas, the relationships are negative. Particularly, female-friendly environment and human resource development (HRD) are the areas exhibiting positive relations with market capitalization in the manufacturing industry. In the service industry, most of the areas, such as employ welfare and work-life balance, are negatively related with market capitalization. When firm size is small (or the history is short), female-friendly environment positively affect firm performance. On the contrary, when firm size is big (or the history is long), most of the internal marketing factors are either negative or insignificant. We explain the theoretical contributions and managerial implications with these results.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site (사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로)

  • Byun, Sungho;Lee, Donghoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.23-43
    • /
    • 2016
  • As a result of the growth of Internet data and the rapid development of Internet technology, "big data" analysis has gained prominence as a major approach for evaluating and mining enormous data for various purposes. Especially, in recent years, people tend to share their experiences related to their leisure activities while also reviewing others' inputs concerning their activities. Therefore, by referring to others' leisure activity-related experiences, they are able to gather information that might guarantee them better leisure activities in the future. This phenomenon has appeared throughout many aspects of leisure activities such as movies, traveling, accommodation, and dining. Apart from blogs and social networking sites, many other websites provide a wealth of information related to leisure activities. Most of these websites provide information of each product in various formats depending on different purposes and perspectives. Generally, most of the websites provide the average ratings and detailed reviews of users who actually used products/services, and these ratings and reviews can actually support the decision of potential customers in purchasing the same products/services. However, the existing websites offering information on leisure activities only provide the rating and review based on one stage of a set of evaluation criteria. Therefore, to identify the main issue for each evaluation criterion as well as the characteristics of specific elements comprising each criterion, users have to read a large number of reviews. In particular, as most of the users search for the characteristics of the detailed elements for one or more specific evaluation criteria based on their priorities, they must spend a great deal of time and effort to obtain the desired information by reading more reviews and understanding the contents of such reviews. Although some websites break down the evaluation criteria and direct the user to input their reviews according to different levels of criteria, there exist excessive amounts of input sections that make the whole process inconvenient for the users. Further, problems may arise if a user does not follow the instructions for the input sections or fill in the wrong input sections. Finally, treating the evaluation criteria breakdown as a realistic alternative is difficult, because identifying all the detailed criteria for each evaluation criterion is a challenging task. For example, if a review about a certain hotel has been written, people tend to only write one-stage reviews for various components such as accessibility, rooms, services, or food. These might be the reviews for most frequently asked questions, such as distance between the nearest subway station or condition of the bathroom, but they still lack detailed information for these questions. In addition, in case a breakdown of the evaluation criteria was provided along with various input sections, the user might only fill in the evaluation criterion for accessibility or fill in the wrong information such as information regarding rooms in the evaluation criteria for accessibility. Thus, the reliability of the segmented review will be greatly reduced. In this study, we propose an approach to overcome the limitations of the existing leisure activity information websites, namely, (1) the reliability of reviews for each evaluation criteria and (2) the difficulty of identifying the detailed contents that make up the evaluation criteria. In our proposed methodology, we first identify the review content and construct the lexicon for each evaluation criterion by using the terms that are frequently used for each criterion. Next, the sentences in the review documents containing the terms in the constructed lexicon are decomposed into review units, which are then reconstructed by using the evaluation criteria. Finally, the issues of the constructed review units by evaluation criteria are derived and the summary results are provided. Apart from the derived issues, the review units are also provided. Therefore, this approach aims to help users save on time and effort, because they will only be reading the relevant information they need for each evaluation criterion rather than go through the entire text of review. Our proposed methodology is based on the topic modeling, which is being actively used in text analysis. The review is decomposed into sentence units rather than considering the whole review as a document unit. After being decomposed into individual review units, the review units are reorganized according to each evaluation criterion and then used in the subsequent analysis. This work largely differs from the existing topic modeling-based studies. In this paper, we collected 423 reviews from hotel information websites and decomposed these reviews into 4,860 review units. We then reorganized the review units according to six different evaluation criteria. By applying these review units in our methodology, the analysis results can be introduced, and the utility of proposed methodology can be demonstrated.

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.

Automatic Quality Evaluation with Completeness and Succinctness for Text Summarization (완전성과 간결성을 고려한 텍스트 요약 품질의 자동 평가 기법)

  • Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.125-148
    • /
    • 2018
  • Recently, as the demand for big data analysis increases, cases of analyzing unstructured data and using the results are also increasing. Among the various types of unstructured data, text is used as a means of communicating information in almost all fields. In addition, many analysts are interested in the amount of data is very large and relatively easy to collect compared to other unstructured and structured data. Among the various text analysis applications, document classification which classifies documents into predetermined categories, topic modeling which extracts major topics from a large number of documents, sentimental analysis or opinion mining that identifies emotions or opinions contained in texts, and Text Summarization which summarize the main contents from one document or several documents have been actively studied. Especially, the text summarization technique is actively applied in the business through the news summary service, the privacy policy summary service, ect. In addition, much research has been done in academia in accordance with the extraction approach which provides the main elements of the document selectively and the abstraction approach which extracts the elements of the document and composes new sentences by combining them. However, the technique of evaluating the quality of automatically summarized documents has not made much progress compared to the technique of automatic text summarization. Most of existing studies dealing with the quality evaluation of summarization were carried out manual summarization of document, using them as reference documents, and measuring the similarity between the automatic summary and reference document. Specifically, automatic summarization is performed through various techniques from full text, and comparison with reference document, which is an ideal summary document, is performed for measuring the quality of automatic summarization. Reference documents are provided in two major ways, the most common way is manual summarization, in which a person creates an ideal summary by hand. Since this method requires human intervention in the process of preparing the summary, it takes a lot of time and cost to write the summary, and there is a limitation that the evaluation result may be different depending on the subject of the summarizer. Therefore, in order to overcome these limitations, attempts have been made to measure the quality of summary documents without human intervention. On the other hand, as a representative attempt to overcome these limitations, a method has been recently devised to reduce the size of the full text and to measure the similarity of the reduced full text and the automatic summary. In this method, the more frequent term in the full text appears in the summary, the better the quality of the summary. However, since summarization essentially means minimizing a lot of content while minimizing content omissions, it is unreasonable to say that a "good summary" based on only frequency always means a "good summary" in its essential meaning. In order to overcome the limitations of this previous study of summarization evaluation, this study proposes an automatic quality evaluation for text summarization method based on the essential meaning of summarization. Specifically, the concept of succinctness is defined as an element indicating how few duplicated contents among the sentences of the summary, and completeness is defined as an element that indicating how few of the contents are not included in the summary. In this paper, we propose a method for automatic quality evaluation of text summarization based on the concepts of succinctness and completeness. In order to evaluate the practical applicability of the proposed methodology, 29,671 sentences were extracted from TripAdvisor 's hotel reviews, summarized the reviews by each hotel and presented the results of the experiments conducted on evaluation of the quality of summaries in accordance to the proposed methodology. It also provides a way to integrate the completeness and succinctness in the trade-off relationship into the F-Score, and propose a method to perform the optimal summarization by changing the threshold of the sentence similarity.