• Title/Summary/Keyword: 마식기

Search Result 2, Processing Time 0.015 seconds

A Study on Relationship between Point Load Strength Index and Abrasion Rate of Sediment Particle (퇴적물 입자의 점하중강도지수와 마식율의 관계에 대한 연구)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.808-823
    • /
    • 2008
  • Sediment abrasion in rivers is caused by the interaction between bedrock channel bed and sediment particles transported through the river. Abrasion rate of sediment particles in rivers is controlled by two major factors; Sediment transport conditions including hydraulic conditions form the erosive forces and physical and chemical strengths of the particles form a resistance force against abrasion and other erosional processes. Physical experiments were performed to find the role of each variable on sediment abrasion process. Total 266 sediment particles were used in this experiment. All sediment particles were divided into 11 independent sediment groups with sediment particle size and sediment loads. Each sediment groups were abraded in tumbling mill for up to 8 hours. Changes in weight were recorded by run and total: 2,128 cases of abrasion rate were recoded. Physical strength of rock particles was measured with point load strength index. It is found that sediment abrasion rate has a negative functional relationship point load strength index ($I_{a(50)}$) ($R^2=0.22$). It was suggested that physical strength of sediment particles set the "maximum possible abrasion rate'. As sediment flux increases, abrasion rates of sediment particles with similar point load strength index were changed. It could be concluded that not only physical characteristics of sediment particles, but also sediment transport conditions control sediment abrasion rates.

GAMETOGENESIS AND EARLY DEVELOPMENT OF LINUPARUS TRIGONUS(VON SIEBOLD) (펄닭새우 생식세포형성과정 및 초기발생)

  • KIM Chang-Hyeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.2
    • /
    • pp.71-96
    • /
    • 1977
  • Early development Linuparus trigonus(von Siebold) has been studied based on the samples collected monthly in Je-ju Island, Korea from February, 1975 to January, 1977. Gametogenesis, reproductive cycle, embryonic development were investigated by histological mettled, and morphological description was made on the first phyllosoma larva which reared in the laboratory. Testis is composed of two tubular duct which are symmetrical with H-shaped appearance. Outer layer of testis is of fibrous connective tissue capsule. In the lumen there is a convoluted seminiferous tubule with interstitial tissue. Ovary is a pair of symmetrical blind tubular lobes, and the midportions are connected each other. The ovary consists of a couple of ovarian sacs partitioned by two-layered connective tissue fibers. Proliferation of spermatogonia are observed all the year around on the germinal epithelium of seminiferous tubule. Partial spermatogenesis is always in progress, and the spermatozoa appear all the year around in the tubules. Nutrition of early oogonia is supplied by fibrous mesenchyme which is abundantly distributed in ovarian sacs. Oocytes grow and couplete maturation divisions in the follicle layers. They finally develop into mature ova before spawning. Reproductive cycle is classified into four successive stages; multiplication stage from September to December, growing stage from January to March, maturation division stage from April to May and mature stage from June to August. Spawning takes place from May to August with peak spawning from Into July to early August. Cleavage type is superficial. Blastopore is formed in blasto-disc region which is proliferation of blastoderm cells. Germinal layers are also derived from tile region. Mesoderm formation is originated from endodermal cells which are formed front the blasto-disc region. The endodermal cells are separated by the process of delamination from yolk sac and take part in the formation of the mid-gut. Morphological characteristics of first phyllosoma larva are different from the larvae of other Palinurid and Scyllarid species.

  • PDF