• Title/Summary/Keyword: 마루높이

Search Result 64, Processing Time 0.023 seconds

A Study on the Proper Crown Height of GT 100,000Ton Cruise ship and DWT 100,000Ton Container ship (10만톤급 크루즈선과 컨테이너선의 적정 마루높이에 관한 연구)

  • Kim, Seungyeon;Lee, Yunsok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.157-162
    • /
    • 2018
  • The increase of risk in port due to the increase in ship size and sea level rises, the standard crown height will increase. In this study, cruise and container ships will need to raise their crown height due to the projected wind pressure areas becoming larger due to the ships' size increase. The mooring assessment was evaluated with the rise of the crown height. The cruise ship of GT 100,000 tons exceeded the permissible breaking force of the mooring line under the crown height conditions of wind speed of 30 kts when the wind direction was $45^{\circ}$ to the direction of the bow. Also, the elevation angle of the pier and mooring line was analyzed and exceeded the crown height, and it was determined that it is necessary to adjust the crown height. Container ships of DWT 100,000 tons were analyzed to exceed the limit of sway motion at the crown height and it was determined that they need to be adjusted to the minimum crown height standard.

A Study on the Evaluation Index of Crown Height given Marine Environmental Factors and Ship Characteristics (해상 환경 및 선박 특성을 반영한 마루높이 평가지표에 관한 연구)

  • Kim, Seungyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.438-444
    • /
    • 2018
  • Korea has recently selected twenty-two ports for reinforcement breakwater installation of protection facilities, due to rise sea level caused by global warming and increase in the number of typhoon and tsunami. In addition, due to consistent enlargement of ship size, dredging for depth of water for large vessel's berthing and enlargement of berth is under construction. However, no definite construction plan for the reinforcement and lengthening of crown height, which has close relationship with the safe mooring of ships. In this study, domestic and foreign design criteria of crown height were analyzed, and the crown height evaluation index and evaluation method were developed by dividing it into environment and ship elements. In particular, in the case of ship evaluation index, each step was set up in 4 steps according to domestic and foreign regulations, weighted by each step, and the safety level of crown height was evaluated. As a result of the mooring safety simulation of the 100,000 ton cruise ship, the appropriate minimum crown height standard was derived to be 3 m above A.H.H.W. The results of this study are expected to be used as basic data to propose the crown height standard reflecting ship characteristics.

A Scenario for the Standard Basis of Crest Elevation Estimation along Korean Coast based on Expected Overtopping Probability (마루높이 설정(設定) 기준(基準)을 위한 기대월파확률 추정 Scenario)

  • Kweon, Hyuck Min;Kim, Gun Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.365-376
    • /
    • 2009
  • The importance of resonable treatment of tide characteristics has been shown by Kweon, et al. (2005, 2006) for the crest elevation estimation because of a big difference of tidal elevation along Korean coast. For the procedure of crest elevation design, the expected overtopping probability (EOP) was estimated by Kweon, et al. (2006). The comparisons on each sea showed that EOP was lower east, south and west sea in order. The results involved the assumption that the tide and design level wave height meet any time in a year. However, big waves mainly occur in summer or winter in Korean coast, the study focuses on the encounter probability of big waves and seasonal tide level. A theory of the encounter probability is not derived by the present study but it shows reasonable acceptability of the proposed scenario in which the expected overtopping probability could be an index for the crest elevation estimation in Korean coast. The calculation based on the scenario gives the possibility range for the crest elevation estimation which has no tendency of each sea along Korean peninsular. The range is within the expected overtopping probability of 1% in the whole coast of Korea.

Experiments for Amour Stability of Low Crested Structure covered by Tripod Block (저 마루높이 구조물의 피복재 안정성 실험: Tripod 피복 조건)

  • Lee, Jong-In;Bae, Il Rho;Lim, Ho Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.43-49
    • /
    • 2020
  • In this study, the stability of the low crested structure armoured by Tripod block has been investigated using two-dimensional hydraulic model tests. The effect of wave steepness and freeboard on the rock stability on crest, front, and the rear slope has been investigated. From the experimental data, the new empirical formula for the stability coefficients of the Tripod block was proposed. But Tripod is not proper to use the armour block of the low crested structure because the uplift force of this block is greater than that of Tetrapod and rock.

Reliability Analysis of Maximum Overtopping Volume for Evaluating Freeboard of Vertical Breakwaters (직립식 방파제의 마루높이 산정을 위한 최대월파량에 대한 신뢰성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.154-162
    • /
    • 2011
  • A reliability analysis model is developed for evaluating the crest freeboard of vertical breakwaters based on the concepts of maximum overtopping volume of individual wave. A reliability function is formulated by defining the margin of admissible overtopping volume and maximum overtopping volume that is depend on the number of overtopping waves, dimensionless crest freeboard, and mean overtopping discharge. In addition, Level III MCS technique is straightforwardly suggested by which the related empirical parameters to reliability function can be considered to be random variables with the wide range of different uncertainties. It can be possible to calculate the probabilities of failure according to the relative crest freeboard with the variations of the incident wave directions, the structural types of vertical breakwaters, and admissible overtopping volumes in conditions of the long and short crested-waves.

Experiments for Amour Stability of Low Crested Structure Covered by Tetrapods (저 마루높이 구조물의 피복재 안정성 실험: Tetrapod 피복 조건)

  • Lee, Jong-In;Bae, Il Rho;Moon, Gang Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.769-777
    • /
    • 2019
  • Low crested coastal structures such as detached breakwaters and submerged breakwaters (artificial reefs) have been commonly used as coastal protection measures. The armour units of these structures are unstable than those in non-overtopped structure cases. The stability of low crested structures armoured by rock has been suggested in existing studies. In this study, the stability of Tetrapods armour units on theses structures has been investigated using two-dimensional hydraulic model tests. The effect of wave steepness and freeboard on the armour stability on crest, front, and the rear slope has been investigated. Armour units were mostly damaged near the upper part of the seaward slope and the crest of the seaward side. From the experimental data, the new empirical formula for the stability coefficients of the Tetrapods was proposed.

Experiments for Amour Stability of Low Crested Structure Covered by Rocks (저 마루높이 구조물의 피복재 안정성 실험: 피복석 피복 조건)

  • Lee, Jong-In;Bae, Il Rho;Moon, Gang Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • In this study, the stability of low crested structure armoured by rock has been investigated using two-dimensional hydraulic model tests. The effect of wave steepness and freeboard on the rock stability on crest, front, and the rear slope has been investigated. Rocks were mostly damaged near the upper part of the seaward slope and the crest of the seaward side. From the experimental data, the new empirical formula for the stability coefficients of the rocks was proposed.