• Title/Summary/Keyword: 마그마 활동

Search Result 102, Processing Time 0.019 seconds

The Study on the Possibility of Using Satellite in Monitoring Precursor of Magma Activity in the Baegdusan Volcano (인공위성을 이용한 백두산 화산 마그마 활동의 전조현상 인지 가능성 연구)

  • Lee, Deok-Su;Choi, Sung-Chan;Oh, Chang-Whan;Seo, Min-Ho;Ryu, In-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.35-47
    • /
    • 2013
  • The Baegdusan Volcano which erupted violently at 1000 AD is still have possibility of eruption. Therefore, it is necessary to monitor regularly the possibility of eruption. However, it is very difficult to install regular monitoring system or to get regularly monitored data due to geopolitic problems. This is why we have to develop regular monitoring technique using satellite. The geoid in the Baegdusan Volcanic area calculated from gravity data obtained from GRACE satellite, decreased from 2002 to 2005. The period of decreasing is well matched with time when magma activities were recognized in the Baegdusan Volcanic area. The decrease in geoid is interpreted to be caused by the decrease of water storage. Considering that the amount of rainfall from 2002 and 2005 is almost constant, the decrease in geoid may be related to the magma activity under the Baegdusan Volcano. The geomagnetic total force in the Baegdusan Volcanic area measured by CHAMP satellite, decreased from 2000 to 2005 and increased after 2005. The period of decrease is well matched with the time with increased activity of magma chamber under the Baegdusan Volcano indicating that the decrease of geomagnetic total force is caused by demagnetization of surrounding rocks due to the increase of temperature of magma chamber. These data indicate the possbility of using change of geoid and geomagnetic total force observed by GRACE and CHAMP satellites for the monitoring of magma activity under the Baegdusan Volcano.

A Study on the Change of Magma Activity from 2002 to 2009 at Mt. Baekdusan using Surface Displacement (지표변위를 활용한 백두산의 2002-2009년 마그마 활동 양상 변화 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Chang, Cheolwoo
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.470-478
    • /
    • 2013
  • There have been a number of observed precursors of volcanic activities- such as volcanic earthquake, surface inflation, specific volcanic gas emission, temperature of hot spring- at Mt. Baekdusan since 2002. We identified the increase of the volume of magma chamber beneath Mt. Baekdusan as we observed an inflation trend of vertical and horizontal surface displacement around Cheonji caldera lake by using precise leveling data from 2002 to 2009. The surface displacement trend changed to deflation in 2010, and the trend changed to inflation again after a while. Utilizing the data of inflated surface (46.33 mm) on the northern slope of Mt. Baekdusan from 2002 to 2003, we calculated the volume change of magma chamber beneath the Mt. Baekdusan. The volume change was about 0.008 $km^3$ ($7.7-8.0{\times}10^6m^3$) from 2002 to 2003. It indicated that a new magma (0.008 $km^3$) injected to the magma chamber 5 km below Mt. Baekdusan.

Characteristics of Nd Isotopic Compositions of the Phanerozoic Granitoids of Korea and Their Genetic Significance (한국 현생 화강암류의 Nd 동위원소 조성 특성과 성인적 의미)

  • Park, Kye-Hun;Lee, Tae-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.279-292
    • /
    • 2014
  • Nd isotopic compositions analyzed from the Phanerozoic granitoids of Korea are integrated and discussed. Variations in Nd isotopic compositions can be explained either by temporal trend or by regional differences. Among the three active periods, first two periods during the Permian-Triassic and Jurassic seem to show variations from rather high ${\varepsilon}_{Nd}(t)$ values at the beginning to lower ${\varepsilon}_{Nd}(t)$ values during the later stages. Such trends probably reflect melting of the subducting oceanic crust and producing magma with higher proportion of depleted mantle derived materials during the early stage of subduction process, and subsequent magmas with greater proportion of old continental crust with progress of subduction. However, the Cretaceous-Paleogene period of active magmatism displays higher ${\varepsilon}_{Nd}(t)$ values during the advanced stage of the igneous activities, which is opposite to the previous active periods. The other explanation is that such differences in ${\varepsilon}_{Nd}(t)$ reflect regional differences, based on the observations that such high-${\varepsilon}_{Nd}(t)$ granitoids distribute in the northeastern Gyeongbuk Province and Gyeongsang Basin. If this is the case, the regions with highr ${\varepsilon}_{Nd}(t)$ values may have distinct crustal evolution histories, e.g. younger average age. The choice between the two hypothesis could be made through further studies.

Analysis of High School 「science」 Textbook on the Magma Formation in the Subduction Boundary (섭입경계에서의 마그마 형성에 대한 고등학교 「과학」 교과서 분석)

  • Park, Kyung-Eun;Ahn, Kun-Sang;Lim, Dhong-Il
    • Journal of the Korean earth science society
    • /
    • v.25 no.4
    • /
    • pp.222-231
    • /
    • 2004
  • The purpose of this study is to analyze the seventh curriculum textbooks and teacher's guides of high school science courses in relation to the generation (mechanism) of magma in subduction boundary and find the incorrect descriptions of the texts and the figures (illustrations) and then suggest some improved schemes. According to the result there are many discrepancies in definition of 'magma' among the textbooks and further little scientific explanations about the formation mechanism of magma in most textbooks, and even no descriptions about that. In addition, the figures are inconsistent with the description of the text and also have some incorrect depiction which might contribute to the forming and reinforcing misconceptions about Plate Tectonics as well as a volcanic activity in subduction boundary. On the basis of the previous researches, therefore, some improved schemes (text descriptions and figures) are suggested. The results of this study should be used as a reference for publishing science textbook, developing science curriculum, and teaching effectively in the high school.

A Preliminary Study on the Correlation between GRACE Satellite Geoid Data Variation and Volcanic Magma Activity (GRACE 인공위성 지오이드 변화와 화산 마그마 활동 간의 상관관계에 대한 예비 연구)

  • Oh, Chang-Whan;Choi, Sung-Chan;Lee, Deok-Su;Kim, Myung-Deok;Park, Jong-Hyun;Seo, Min-Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.550-560
    • /
    • 2013
  • In this study, the variations of geoid measured by GRACE satellite are investigated in the 20 volcanic areas erupted since 2005, and it is recognized that a detailed geological study is necessary in using geoid data for a research of the magmatic activities under the volcano. Therefore, the relationship between the regional geoid variation obtained by GRACE satellite and the change of magma activity, is studied in Japan's Shinmoedake volcano in the Kirishima volcanic complex whose eruption in 2011 was studied in detail geologically. Throughout this study the increase of geoid from 2002 in the Shinmoedake volcanic area is confirmed to be caused by the increase of gravity under the volcano, which is well matched with geological interpretation of the continuous intrusion of basaltic magma into magma chamber during several years before the 2011 eruption. The result indicates that information of the geoid variation measured by GRACE satellite is useful for monitoring the possibility of volcanic eruption although there is a need to more study to be able to confirm the possibility.

Detecting Surface Changes Triggered by Recent Volcanic Activities at Kīlauea, Hawai'i, by using the SAR Interferometric Technique: Preliminary Report (SAR 간섭기법을 활용한 하와이 킬라우에아 화산의 2018 분화 활동 관측)

  • Jo, MinJeong;Osmanoglu, Batuhan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1545-1553
    • /
    • 2018
  • Recent eruptive activity at Kīlauea Volcano started on at the end of April in 2018 showed rapid ground deflation between May and June in 2018. On summit area Halema'uma'u lava lake continued to drop at high speed and Kīlauea's summit continued to deflate. GPS receivers and electronic tiltmeters detected the surface deformation greater than 2 meters. We explored the time-series surface deformation at Kīlauea Volcano, focusing on the early stage of eruptive activity, using multi-temporal COSMO-SkyMed SAR imagery. The observed maximum deformation in line-of-sight (LOS) direction was about -1.5 meter, and it indicates approximately -1.9 meter in subsiding direction by applying incidence angle. The results showed that summit began to deflate just after the event started and most of deformation occurred between early May and the end of June. Moreover, we confirmed that summit's deflation rarely happened since July 2018, which means volcanic activity entered a stable stage. The best-fit magma source model based on time-series surface deformation demonstrated that magma chambers were lying at depths between 2-3 km, and it showed a deepening trend in time. Along with the change of source depth, the center of each magma model moved toward the southwest according to the time. These results have a potential risk of including bias coming from single track observation. Therefore, to complement the initial results, we need to generate precise magma source model based on three-dimensional measurements in further research.

Monitoring Techniques for Active Volcanoes (활화산의 감시 기법에 대한 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Chang, Cheol-Woo
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.119-138
    • /
    • 2014
  • There are various ways to monitor active volcanoes, such as the method of observing the activity of a volcano with the naked eye, the method of referring to the past eruptive history based on the historic records and the method of monitoring volcanoes by using observation equipment. The most basic method from the observation equipment-using methods to monitor volcanoes is seismic monitoring. In addition to this, the ways to monitor volcanoes are as follows: resonance observation which may be effective to remove artificial noises from the seismic activities that are recorded in the seismograph, ground deformation by using precision leveling, electronic distance measurement, tiltmeter, GPS, and InSAR observation method, volcanic gas monitoring, hydrologic and meteorological monitoring, and other geophysical monitoring methods. These monitoring methods can make volcanic activities effectively monitored, determine the behavior of magmas in magma chambers and help predict the future volcanic eruptions more accurately and early warning, thus, minimize and mitigate the damage of volcanic hazards.

Evaluation of Recent Magma Activity of Sierra Negra Volcano, Galapagos Using SAR Remote Sensing (SAR 원격탐사를 활용한 Galapagos Sierra Negra 화산의 최근 마그마 활동 추정)

  • Song, Juyoung;Kim, Dukjin;Chung, Jungkyo;Kim, Youngcheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1555-1565
    • /
    • 2018
  • Detection of subtle ground deformation of volcanoes plays an important role in evaluating the risk and possibility of volcanic eruptions. Ground-fixed observation equipment is difficult to maintain and cost-inefficient. In contrast, satellite remote sensing can regularly monitor at low cost. In this paper, following the study of Chadwick et al. (2006), which applied the interferometric SAR (InSAR) technique to the Sierra Negra volcano, Galapagos. In order to investigate the deformation of the volcano before 2005 eruption, the recent activities of this volcano were analyzed using Sentinel-1, the latest SAR satellite. We obtained the descending mode Sentinel-1A SAR data from January 2017 to January 2018, applied the Persistent Scatter InSAR, and estimated the depth and expansion quantity of magma in recent years through the Mogi model. As a result, it was confirmed that the activity pattern of volcano prior to the eruption in June 2018 was similar to the pattern before the eruption in 2005 and was successful in estimating the depth and expansion amount. The results of this study suggest that satellite SAR can characterize the activity patterns of volcano and can be possibly used for early monitoring of volcanic eruption.

Petrochemistry and magma process of Jurassic Boeun granodiorite in the central Ogcheon belt (중부 옥천대에 분포하는 쥬라기 보은 화강섬록암의 암석화학과 마그마과정)

  • 좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.188-199
    • /
    • 1996
  • Boeun granodiorite, which intruded into the metasedimentary rocks of the Ogcheon Group, show chemical natures of metaluminous and calc-alkaline. Generating and emplacing environment of the Boeun granodiorite would have been a active continental margin. Comparing to the contemporaneous Inje-Hongcheon granodiorite in the Gyeonggi massif, the Boeun granodiorite seems likely to have formed under more immature continental arc environment. Compositional changes of major, trace and rare earth elements in granodiorite and felsic dyke are not certain to indicate crystallization differentiation. From this fact, the simple fractional crystallization model would be in question to explain the magma process which controlled the formation of the Boeun granitic mass. The model calculations for Rayleigh fractionation, fractionation with variable major-component composition, assimilation-fractional crystallization (AFC) were carried out to examine the magma process of the mass. The results of former two models do not agree with the compositional variations in the mass. The AFC model can be, however, applied to the magma process. The conditions for AFC process are (1) composition of assimilated wallrock is similar to that of primary magma. (2) assimilating rate is similar to crystallizing rate, and (3) mass of assimilated wallrock is about 10% of that of the magma. These conditions deny a possibility that the assimilated wallrock was the metasedimentary rocks of the Ogcheon Group. This indicates that after having experienced the assimilation process in deeper crust, the granodiorite magma intruded into the Ogcheon group. Every model calculating suggests that the felsic dyke was differentiated not from the granodiorite magma, but from a different source magma.

  • PDF

Eruptive History of the Ulleungdo-Dokdo Volcanic Group, the East Sea: a Multi-Scale Approach (동해 울릉도-독도 화산그룹 분화사 다중스케일 연구)

  • Kim, Gi-Bom;Lee, Jae-Hyuk;Ahn, Ho-Jun;Je, Yoon-Hee
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.140-150
    • /
    • 2022
  • This paper focuses on introducing the concept of the multi-scale study on the Ulleungdo-Dokdo Volcanic Group in the East Sea and recent new findings from it. Multi-channel seismic reflection data reveals that the major volcanic activities of the Ulleungdo-Dokdo Volcanic Group took place between 5 and 2.5 Ma, which were propagated from Isabu Tablemount on the eastern end to the Ulleung Island on the western end. The terrestrial Ulleung Island was built via 5 stages, which eventually formed a 3 km-wide caldera, named Nari Caldera, and a volcanic dome, named Albong, within the caldera. The Albong and the unit N-1, the earliest phreatomagmatic explosive phase of the Albong volcano, were generated from a new magma injected into the existing phonolitic body. The generally trachyandesitic bulk rock composition of the pumice in unit N-1 and Albong is attributed to the contamination of the new magma by mafic cumulates at the base of the existing phonolitic chamber. The lines of evidence of a new magma injection point toward that Ulleung Island is an active volcano with a live subvolcanic magma plumbing system.