• Title/Summary/Keyword: 마그마혼합암

Search Result 23, Processing Time 0.017 seconds

Petrology of host granites and enclaves from the Bohyeonsan area, Euiseong Basin (의성분지 보현산 일대 화강암류와 포획암에 대한 암석학적 연구)

  • 좌용주;김건기
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.187-203
    • /
    • 2000
  • Mafic microgranular enclaves (MME) occur in the granites from the Bohyunsan area. The host granites are generally of granodioritic and granitic compositions. The MME can be divided into magic mineral clusters, quartz diorite and diorite according to their occurrence. Halter variation diagrams show linear trends between the MME and the host granites. Though the rim compositions of plagioclase in the host granites and the MME are similar the core compositions of plagioclase in some host granites show abnormally high An content. The Mg/(Mg+Fe) ratio of hornblende in the host granites gradually increase from the core to the rim. The chemical composition of minerals in the host granites had been affected by more marc magma composition. The modelling of major elements of the MME and hybrid host granites also indicate that they result from simple mingling/mixing between a dioritic magma and the host granite magma. The MME are thus interpreted to be globules of a more mafic magma which intruded the granite magma. Partial equilibration has been achieved between the MME and the host granites after they were commingled with each other.

  • PDF

Petrology of enclave in the Mt. Wonhyo granite, Yangsan city (양산시 원효산 화강암에 산출되는 포획암에 대한 암석학적 연구)

  • 진미정;김종선;이준동;김인수;백인성
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.142-168
    • /
    • 2000
  • The granites distributed in the Kyongsang basin contain the rocks which are different from the host rocks, and they are known as magic microgranular enclaves. The genesis of the magic micro-granular enclaves can be divided into four types: (1) rock fragments from country rocks; (2) cumulation of the early crystals in host magma or disruption of early chilled borders; (3) magma mingling; and (4) restite. These enclaves can be easily found in the granites around Mt. Wonhyo, Yangsan city. They are ellipsoidal in shape, and have phenocrysts might be originated from the host rocks and sharp contacts with the granites. Under the microscope, textures such as oscillation zoning, horn-blende-mantled quartz, rapakivi texture, and acicular apatite are observed, and these indicate that the enclaves were originated from magma and then produced by chilling. The evidences showing that the enclaves were formed by magma mingling are: (1) petrographical characteristics; (2) similarity of the compositions between the rim of plagioclase in the enclave and plagioclase in the granite; (3) linear trends of the major elements; (4) total REE content of the enclaves; and (5) Textural and compositional variations from rim to core in zoned enclaves. The magic end member of the enclave is regarded as the aphyric basaltic andesite in Mt. Sinbul-Youngchui area. The granites around Mt. Wonhyo experienced the magma mingling process which was produced by the injection of mafic magma at about 70 Ma, during the crystal differentiation, and then continued the crystallization. The equigranular granites and the micrographic granites in the study area are considered as the results after the magma mingling process.

  • PDF

Field Evidence of Magma Mixing from Concentric Zoning and Mafic Microgranular Enclaves in Bunam Stock, Korea (청송 부남암주의 동심원상 누대와 포유체로부터 마그마 혼합작용의 야외증거)

  • Hwang, Sang Koo;Seo, Seung Hwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.349-360
    • /
    • 2016
  • The Bunam Stock ($29.5km^2$ area) is an outcrop of plutonic complex classified four facies: coarse-grained granite, quartz monzodiorite, granodiorite and fine-grained granite. Three facies except the last one exhibit very irregular boundaries with gradational compositional variations between both facies and show concentric zoning from the central quartz monzodiorite through granodiorite to outer coarse-grained granite. Mafic microgranular enclaves (MME) commonly occur in granodiorite. Some MMEs, have very fine-grained chilled margins and indentedly crenulate contacts, and display horizontally circular and vertically elongate shapes. Their shape and granularity indicate coeval flow and mingling of partly crystalline felsic and mafic magmas. MMEs exhibit dark fine-grained margins giving them a ellipsoidal form that has been attributed to undercooling of a mafic magma as blobs intruded into a felsic magma. The observed relations in the Bunam Stock identify that two endmembers are coarse-grained granite from a felsic magma and quartz monzodiorite from a mafic magma, and hybrid is granodiorite including MMEs. So they exhibit concentric zoning that lays the center on the mafic endmember due to magma mixing at the contacts of two magmas, when mafic magma injected into felsic magma. Thus the quartz monzodiorite may probably represent an ancient conduit of mafic magma transport through a granitic magma chamber. Mafic magma would rise through the conduit in which favorable conditions for magma mixing occurred. All these features suggest that they formed from mixing processes of calc-alkaline magma in the Bunam Stock.

Study on the Origin of Rapakivi Texture in Bangeojin Granite (방어진 화강암에 나타나는 라파키비 조직의 성인에 관한 연구)

  • 진미정;김종선;이준동
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.30-48
    • /
    • 2002
  • Phenocrysts with rapakivi texture are easily observed in Bangeojin granite. The rapakivi texture is composed of inner pinkish alkali feldspars and white-colored mantling plagioclase. The Bangeojin granite distinctively includes lots of mafic microgranular enclaves and can be divided into five rock facies: (1) enclave-poor granite (EPG); (2) enclave-rich granite (ERG); (3) mafic microgranular enclave (MME); (4) hybrid zone between mafic microgranular enclave and granite (HZ); (5) hybrid zone-like enclaves (HLE). The rapakivi textures are observed in these five rock facies with no difference in shape and size. Plagioclase mantle commonly shows dendritic texture that is an important indicator to know the rapakivi genesis. The mantling texture would indicate supercooling condition during magma solidification process. In addition, mafic microgranular enclaves would imply the magma mingling environment. The magma mixing process had possibly caused the mantling texture. An abundance of rapakivi phenocrysts in HZ and the influxing phenomenon of the phenocrysts into MME support that there were physical chemical exchanges during the mingling. And this model of the magma mixing/mingling explain well the heterogeneous distribution of the rapakivi phenocrysts in the five rock facies. Therefore the rapakivi textures in the Bangeojin granite would have been formed by magma mixing process.

Petrological Study of Cretaceous Granitic Recks in the Waryongsan Area, Southwestern Gyeongsang Basin: Compositional Change of Granitic Rocks by Magma Mingling (경상분지 남서부 와룡산 일대에 분포하는 백악기 화강암류에 관한 암석학적 연구: 마그마 불균질 혼합에 의한 화강암류의 조성변화)

  • Kim Kun-Ki;Kim Jong-Sun;Jwa Yong-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.12-23
    • /
    • 2005
  • Cretaceous granitic rocks in the Waryongsan area occur as a stock and show compositional changes with altitude. They include mafic microgranular enclaves (MME) with various sizes and types. The MMEs present clear evidence of magma mingling such as supercooling zone, mantling texture and back veining. The granitic rocks are divided into porphyritic granite, porphyritic granodiorite and fined-grained granite by their petrographic characteristics and modal compositions. The MMEs are discriminated to quartzdioritie, quartzmonzodiorite and tonalite. They have varying areal proportions in each granitic rock-type: 10∼l5% in the porphyritic granite, about 50% in the porphyritic granodiorite, and about 20% in the fined-grained granite. SiO₂ contents shows compositional change of 61.2∼72.0wt.%. Mean SiO₂ contents have 61.7wt.% in the porphyritic granodiorite, 68.6wt.% in the porphyritic granite. and 71.9wt.% in the fined-grained granite, respectively. Major oxide contents of the granitic rocks linearly vary with SiO₂ contents from the porphyiritic granodiorite to the fine-grained granite on Harker diagrams. Linear compositional variations seem to have been caused by differential degrees of mingling between mafic magma and host granite. Where larger amount of mafic magma was injected into the host granitic magma, the two magmas reached to thermal equilibrium more quickly and eventually chemical mixing occurred to produce the composition of the porphyritic granodiorite. On the other hand. less amount of injected mafic magma would have been responsible for mechanical mixing to produce the compositions of the porphyritic granite and the fined-grained granite. Therefore, it is considered that the granitic rocks in the Waryongsan area experienced magmas mingling resulting from the injection of more mafic magma into differentiating granitic magma, and that the compositional changes of the granitic rocks were ascribed to the degree of mingling between the two magmas.

The Overview of Layered structures in Mafic - Ultramafic Macheon Intrusion (고철질-초고철질 마천관입암의 층상구조 개관)

  • Song, Yong-Sun;Kim, Dong-Yeon;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.162-179
    • /
    • 2007
  • Macheon Layered Intrusion (MLI) which intruded into Precambrian gneiss complex of the northern Jirisan area, southeastern part of Youngnam (or Sobaeksan) Massif, is a layered mafic-ultramafic complex of Triassic age (ca. 223 Ma). The MLI is divided into Layered Series and Laminated Series. Layered Series is subdivided into Central Zone (Lower Zone) consisting of olivine gabbros and Peripheral Zone (Middle or Upper Zone) consisting of hornblende gabbros based on the type of cumulus texture and the main mafic phase. The Central Zone of Layered Series comprises thinly laminated olivine gabbros and uniform or thickly laminated coarse olivine gabbros which consist of mela-gabbro, troctolite, leuco-troctolite, and anorthositic rocks. Laminated Series is also subdivided into quartz-bearing biotite-pyroxene gabbros and homblende diorite and both have variable amount of interstitial quartz and microcline. Laminated series display moderately to slightly developed igneous lamination which is defined by the planar alignment of lath-shape plagioclases. Chilled margin of quartz-bearing biotite-pyroxene gabbro with surrounding Precambrian gneisses insists shallower intrusion of more felsic cognate magma evolved in the deep a little later. Rocks of Layered Series have orthocumulus to adcumulus olivine, adcumulus to intercumulus plagioclase, and intercumulus to heteradcumulus pyroxene and hornblende. Magmatic modally grading, folding, and cross-lamination are not rarely occurred in thinly layered rocks. These textural characteristics define main mechanisms of the formation of layered and laminated structure in mafic-ultramafic rocks of Macheon Layered Intrusion are gravity settling and in-situ crystallization associated with slumping and density current.

Petrology of the Volcanic Rocks in Geoje Island, South Korea (거제도 화산암의 암석학적 연구)

  • 윤성효;이준동;이상원;고정선;서윤지
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 1997
  • Andesitic pyroclastics and lava flows are deposited as a part of composite volcanoes by Cretaceous volcanic activity in Geojae Island, off the coast of Korea. The andesitic pyroclastics are composed of tuff breccia and lapilli tuff minor intercalated tuff. Lava flows are divided into dense and porphyritic andesite containing phenocrysts of plagioclase, pyroxene, and/or hornblende. The andesitic rocks represent charactersitcs of carc-alkaline BAR association with basalt, basaltic andesite, andesite, and dacite to rhyolite. Major element variations of the volcanic rocks show that $Al_2O_3$, total FeO, CaO, MgO and $TiO_2$ decrease with increasing $SiO_2$ but $K_2O$ and total alkalis increase, and represent differntiation trend of calc-alkaline rock series. In spider diagram, contents of Sr, K, Rb, Ba, and Th are relatively high, but contents of Nb, P, Ti and Cr are low. These petrochemcial characteristics are similar to those of rocks from island arc or continental margein related to plate subduction. Chondrite-normalized REE patterns of volcanic rocks are paralle to subparallel, with LREE enriched than HREE, and show gradual increase of negative Eu anomaly from basalt to dacite and rhyolite, suggesting comagmatic fractional crystallization with minor effects of assimilation and magma mixing. Andesitic rocks are assumed medium-K orogenic andesites that formed in the tectomagmatic environment of subduction zone under normal continental margin arc.

  • PDF

Petrology of the Mt. Dungjuribong Volcanic Complex, Gurye-gun, Southwest of Ryeongnam Massif (영남육괴 남서부 구례군 둥주리봉 화산암복합체에 대한 암석학적 연구)

  • Koh, Jeong-Seon;Yun, Sung-Hyo;Kim, Young-La
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.349-370
    • /
    • 2009
  • The Mt. Dungjuribong Volcanic Complex located in Gurye-gun, southwest of Ryeongnam massif, composed of Cretaceous andesitic rocks and rhyolite. $SiO_2$ contents of the volcanic rocks range from 52.0 to 78.5 wt.%. The major and trace elements composition, REE patterns and tectonomagmatic discrimination diagrams of volcanic rocks suggest that they are typical of continental margin arc calc-alkaline rocks produced in the subduction environment. The phenocrysts of the volcanic rocks show that they had gone in disequilibrium state, such as reversal zoning and resorbed core of plagioclase, reaction rim around pyroxene and resorbed margins of quartz, which showing the evidence of magma mixing during the evolution of magma.

Antirapakivi Mantled Feldspar of the Albong Trachyandesite from Ulleung Island, Korea (울릉도 알봉조면안산암에서 산출되는 안티라파키비조직 장석의 성분)

  • Sung-Hyo Yun
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.737-748
    • /
    • 2022
  • In this study, the composition of feldspar phenocrysts observed in the Ulleungdo Albong trachyandesite lava dome was identified by performing point and X-ray element mapping surface analysis (EPMA). Plagioclase, which appears as a phenocryst in the Albong trachyandesite, corresponds to bytownite and labradorite, and andesine, and lath in the microphenocrysts and the matrix corresponds to andesine to oligoclase. Alkali feldspar mantled around plagioclase phenocrysts and microphenocrysts correspond to anorthoclase and sanidine. Plagioclase phenocrysts with a distinct zonal structure represent a normal structure in which the An content of the zoning decreases from bytownite to labradorite or andesine as it moves from the center of the phenocrysts to the edge. The edge of the phenocryst is surrounded by alkali feldspar, showing an antirapakivi texture. X-ray mapping of feldspar phenocrysts showed a typical antirapakivi texture. Normal zoning with distinct zoning showing a difference in component composition was clearly shown. The edges were mantled with alkali feldspar, and antirapakivi represents the texture. The antirapakivi texture of feldspar in the Albong trachyandesite may have been formed in the mixing system when alkali feldspar crystallized and mantled around plagioclase phenocrysts and microphenocrysts. This is because plagioclase phenocrysts and microphenocrysts in magma that had already crystallized are more mafic than trachyandesite magma.

Geochemistry of Granitic Rocks Around the Southern Part of the Yangsan Fault (양산단층 남부일원에 분포하는 화강암질암의 지화학적 연구)

  • Hwang Byoung-Hoon;Yang Kyounghee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.165-181
    • /
    • 2005
  • The granitic rocks distributed in the southern part of the Yangsan Fault are classified into five distinct rock facies based on the field relation, petrography and geochemical characteristics. These five different rock facies can be grouped into two considering their origins. Group I, which reveals various evidences of magma mixing, includes three rock facies of granodiorite, enclave-rich porphyritic granite, and enclave-poor porphyritic granite. Group H intruding Croup I includes equigranular granite and micrographic granite with no evidence of magma mixing. It is suggested that the distinctively different trace element and isotopic chemistries between group I and II, support evolution from the different parental magma. It is suggested that the three rock facies in group I were generated by different degrees of magma mixing in addition to fractionation of plagioclase. MMEs experienced fractionation of biotite. The two facies in group H seem to have been generated from different parent magma from group I and evolved by fractionation of K-feldspar. The Rb-Sr whole-rock ages of the group I rocks yield $59.2\~58.9Ma$, and those of the group II rocks give 53. $3\~51.7Ma$, regardless of their distribution whether they occur in the eastern or western parts of the Yangsan Fault. Based on Sm-Nd isotope compositions, depleted mantle model ages $(T_2DM)$ of the group I range $0.8\~0.9Ga$, while those of the group II$0.6\~0.7Ga$.