• Title/Summary/Keyword: 릴렉세이션

Search Result 18, Processing Time 0.021 seconds

Shrinkage Stress Analysis of Concrete Slab with Shrinkage Strip in Multi-Story Building (수축대를 사용한 고층건물 콘크리트 슬래브의 건조수축응력 해석)

  • 김한수;조석희
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.726-733
    • /
    • 2002
  • Shrinkage strip or separation strip is a temporary joint that is left open for a certain time during construction to allow a significant part of the shrinkage to take place without inducing stress. A shrinkage stress analysis method of shrinkage strip in concrete slab of multi-story building considering the relaxation effect of creep and construction sequence is proposed. The analysis results of 10-story example building show that the effect of shrinkage strip can be analyzed easily by the proposed method. And shrinkage strip installed in a particular floor makes the stress of that floor reduced and the stress of the other floors increased a little. The rate and amount of stress reduced with closing time mainly depends on the development of shrinkage with time of concrete model used. The amount of stress reduced is determined by the amount of shrinkage strain developed before the closing of shrinkage strip.

Time-Dependent Behavior Analysis of Pre-Tensioned Members Using High-Performance Concrete(HPC) (고성능 콘크리트(HPC)를 사용한 프리텐션 부재의 시간의존거동 해석)

  • Nam, Yoo-Seok;Cho, Chang-Geun;Park, Moon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.479-487
    • /
    • 2006
  • This paper deals with a research about the time-dependent behavior analysis for pre-tensioned high-performance concrete(HPC) members. By improving AASHTO-LRFD(2004) method for predicting the creep and shrinkage of normal concrete, and the relaxation of prestressing tendon, a time-dependent behavior analysis of high-performance concrete structures has been introduced. Two methods, the step-function method and the time-step method have been incorporated in the time-dependent analysis. The developed program can predict the initial and time-dependent losses of prestressing forces and the deflections of high-performance concrete structures. The present model has been verified by comparing with the experimental results from the test of time-dependent behaviors of pre-tensioned members using high-performance concrete. From this, the current model gives good relations with the experimental results, but the AASHTO method is not good for the prediction of time-dependent behaviors of high-performance concrete members.

A partially occluded object recognition technique using a probabilistic analysis in the feature space (특징 공간상에서 의 확률적 해석에 기반한 부분 인식 기법에 관한 연구)

  • 박보건;이경무;이상욱;이진학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1946-1956
    • /
    • 2001
  • In this paper, we propose a novel 2-D partial matching algorithm based on model-based stochastic analysis of feature correspondences in a relation vector space, which is quite robust to shape variations as well as invariant to geometric transformations. We represent an object using the ARG (Attributed Relational Graph) model with features of a set of relation vectors. In addition, we statistically model the partial occlusion or noise as the distortion of the relation vector distribution in the relation vector space. Our partial matching algorithm consists of two-phases. First, a finite number of candidate sets areselected by using logical constraint embedding local and structural consistency Second, the feature loss detection is done iteratively by error detection and voting scheme thorough the error analysis of relation vector space. Experimental results on real images demonstrate that the proposed algorithm is quite robust to noise and localize target objects correctly even inseverely noisy and occluded scenes.

  • PDF

A Case Study on Axial Forces of Cable-band Bolts in Domestic Suspension Bridge (국내 현수교량의 케이블 밴드볼트 축력관리 및 검토사례)

  • Park, Si-Hyun;Jung, Woo-Young;Kim, Hyun-Woo;You, Dong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Suspension bridge cables made of high strength steel wires require periodical maintenance in accordance with the axial force of cable-band bolts, since the bolts in suspension bridges can undergo tension decrease due to creep of cable wires, bolt relaxation, load fluctuation, and cable re-arrangement, etc. Consequently, this study is aimed at investigating and subsequently evaluating the critical factors with respect to the bolt tension-decrease phenomenon in SR suspension bridge in Korea, based on field monitoring, theoretical studies, and field record management works. From the observation, it is interesting to note that the decrease in the bolt tension force is typically accompanied by plastic deformation of the zinc plating layers in the cable wires. In addition, a framework corresponding to generic methodologies to characterize the deformation in terms of the bolt tension-decrease and long-term history management has been developed in this exploratory study.

Load Transfer Test for Re-tensioning Post-Tension Kit for Prestressed Concrete (프리스트레스트 콘크리트 부재용 재긴장 정착구 하중전달시험)

  • Hur, Jae-Hoon;Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.8-14
    • /
    • 2021
  • Post-tensioned prestressed concrete members experience immediate prestress losses as well as time-dependent prestress losses such as creep, dry shrinkage and relaxation. In addition, the stress of the upper and lower parts of the member changes due to the change in dead load due to the replacement of the upper slab and/or pavement. Such changes in fiber stress may affect the safety of the member, and it is necessary to adjust the prestressing force. Therefore, in this study, a screw type of re-tensioning post-tension kit is proposed, and it is verified that the safety against load and the stability against strain are satisfied through the load transfer test specified in EAD160004 and KCI-PS101.

Improvement of Lift-off Tests via Field Evaluation of Residual Load in Ground Anchor (현장 잔존긴장력 평가를 통한 리프트오프 시험 방법 개선)

  • Song, minkwon;Park, Seong-yeol;Lee, Sangrae;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.43-51
    • /
    • 2019
  • At present, the ground anchor method is commonly applied to securing the slope stability in Korea. The ground anchor is reported to decrease in tensile load due to aging and environmental influences with time such as corrosion, relaxation, creep and so on. In Korea, the lift-off test is performed for the periodic inspection or cases when the symptoms of deterioration on anchors and the residual tensile load of the anchors is checked. However, the current lift-off test standard (MOLIT, 2010) is not fully specified in details. In this study, the factors affecting the lift-off test were investigated based on the previous research and foreign standards and lift-off tests were performed with consideration for the loading and unloading cycle, load increment method, and tensioning tendon method. Based on the results, this paper proposes improved testing and evaluation procedures of the lift-off test considering the workability and time limits in the field.

Determination Method for Longitudinal Initial Prestress in Composite Beams with Precast Decks I: Simply Supported Beams (프리캐스트 바닥판을 사용한 강합성보의 교축방향 초기 프리스트레스 산정방법 I : 단순보)

  • Cho, Sun-Kyu;Lee, Jong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.15-24
    • /
    • 2008
  • This paper presents the analytical method for the long-term behavior of simply supported composite beams with precast decks prestressed in the longitudinal direction. The objectives of time-dependent analysis are to estimate losses of prestress on the concrete slab and long-term deflection due to creep and shrinkage of concrete, relaxation of prestressing steel. Also, the time-dependent analysis was carried out using the presented analytical method to evaluate the effects of several parameters on the long-term behavior of composite bridge with precast deck, including geometrical shapes of composite beams, compressive strength of concrete and magnitude of initial prestress. The results of the analysis indicated that, in the effects of geometrical shapes of composite beams, the main parameters affecting the losses of prestress and the long-term deflection were the cross sectional area and the moment of inertia of steel beam, respectively. Finally, the determination method for the required initial prestress was proposed by evaluation of the loss characteristics due to shrinkage and creep of concrete.

A Proposal of Autogenous Deformation and Self-induced Restrained Stress Test Using Thermal Analysis Results to Predict Early-Age Cracks of Externally Restrained Concrete Members (외부구속 콘크리트 부재의 초기균열 예측을 위해 온도해석 결과를 이용한 자가변형 및 구속응력 측정 실험의 제안)

  • Byun, Jong-Kwan;Kang, Won Ho;Kang, Jeong-Kil;Bae, Seong-Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • It is difficult to predict the early-age cracks of strain restrained concrete members due to environmentally sensitive parameters. A new method is proposed to predict the cracks by test of autogenous deformation and self-induced restrained stress of specimens which simulates early-age crack state by hydration heat of the'Wall-On-Foundation'members. For this purpose, thermal analysis of entire structure considering the environmental condition is performed at first, and the specimens are set up where hydration heat was electronically controlled according to the analysis results. By measuring free deformation and force to compensate the autogenous strain including relaxation, feasibility of cracks can be estimated. The proposed method can predict the occurrence of cracks better than the material test of the early age concrete which has large variance. The method of this study is particularly useful when it is used as a preliminary experiments to predict the crack more precisely before full-scale concrete placement in construction of large structures.