• Title/Summary/Keyword: 리트벨트 정밀화

Search Result 3, Processing Time 0.02 seconds

Phase evaluation of Fe/Co pigments coated porcelain by rietveld refinement (리트벨트 정밀화법에 의한 Fe/Co 안료가 코팅된 도자기의 상분석)

  • Nam-Heun Kim;Kyung-Nam Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.174-180
    • /
    • 2023
  • Porcelain (white ware, celadon ware) coated with a ferrous sulfate and ferrous/cobalt sulfate was sintered at 1250℃. The specimens were investigated by HR-XRD, FE-SEM, HR-EDS, and UV-vis spectrophotometer. Through X-ray rietveld quantitative analysis, quartz and mullite were found to be the main phases for white ware, and mullite and plagioclase were found to be the main phases for celadon ware. When the pigment of ferrous/cobalt sulfate was applied, were identified as an andradite phase for celadon ware and a spinel phase for the white ware, and the amorphous phase, respectively. The L* value, which was the brightness of the specimen, was 72.01, 60.92 for white ware and celadon ware, respectively. The ferrous and ferrous/cobalt pigment coated porcelain had L* values of 44.89, 52.27 for white ware and celadon ware, respectively; with a* values of 2.12, 1.40, an d at b* values of 1.45 and 13.79. As for the color of the specimens, it was found that the L* value was greatly affected by the white ware, and the b* value differed greatly depending on the clay. It was thought to be closely related to the production of the secondary phase such as Fe2O3 and andradite phase produced in the surface layer.

Synthesis and Rietveld Structure Refinement of Mn-Tourmalines (Tsilaisite) (Mn-전기석(Tsilaisite)의 합성 및 리트벨트 구조분석)

  • Grover John;Choi Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.1 s.47
    • /
    • pp.15-29
    • /
    • 2006
  • Synthetic Mn-tourmalines (tsilaisite) were obtained by hydrothermal synthesis under the condition of 2 Kbar, $375{\sim}700^{\circ}C$, and 50 day-run-time with complete substitution of Mg in dravite by Mn (Mn%=0, 25, 50, 75, and 100%). They are all 6 samples containing Mn-tourmaline with some amounts of albite, spessartine, rhodocrosite, phlogopite etc, showing different synthetic condition of temperature and Mn composition. Synthetic Mn-tourmalines are of site deficiency in X-site ($0.53{\sim}0.68$) more than that of natural ones (approx. $0.2{\sim}0.3$) and show Mn cations occupying Y-site less than expected with initial experiments, leading to failure in synthesis of end-member tsilaisite. Rietveld structural refinements reveal that $R_{wp}$ ($R_{p}/R_{exp}$) is in the range of 13.35 and 18.62%, $R_{B}$ and S (CofF) are $4.85{\sim}6.25%$ (S-18: 8.57%), $1.31{\sim}1.59$ (S-18: 1.81), respectively. Unit cell parameters (space group R3m, z=3) are ${\alpha}=15.8994\;{\AA}$ and $c=7.1846\;{\AA}$ in average (S-18: ${\alpha}=15.9491\;{\AA},\;c=7.1773\;{\AA}$). Average bond lengths of and are $2.67{\sim}2.69\;{\AA}$ (S-18: $2.65\;{\AA}$) and $2.00{\sim}2.02\;{\AA}$ (S-18: $1.96\;{\AA}$), respectively. Ditrigonality (${\delta}$) are in the range of 0.022 and 0.031 (S-18: 0.061), indicating degrading symmetry with increase of Mn content.

Rietveld Structure Refinement of Biotite Using Neutron Powder Diffraction (중성자분말회절법을 이용한 흑운모의 Rietveld Structure Refinement)

  • 전철민;김신애;문희수
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • The crystal structure of biotite-1M from Bancroft, Ontario, was determined by Rietveld refinement method using high-resolution neutron powder diffraction data at -26.3$^{\circ}C$, 2$0^{\circ}C$, 30$0^{\circ}C$, $600^{\circ}C$, 90$0^{\circ}C$. The crystal structure has been refined to a R sub(B) of 5.06%-11.9% and S (Goodness of fitness) of 2.97-3.94. The expansion rate of a, b, c unit cell dimensions with elevated temperature linearly increase to $600^{\circ}C$. The expansivity of the c dimension is $1.61{\times}10^{40}C^{-1}$, while $2.73{\times}10^{50}C^{-1}$ and $5.71{\times}10^{-50}C^{-1}$ for the a and b dimensions, respectively. Thus, the volume increase of the unit cell is dominated by expansion of the c axis as increasing temperature. In contrast to the trend, the expansivity of the dimensions is decreased at 90$0^{\circ}C$. It may be attributed to a change in cation size caused by dehydroxylation-oxidation of $Fe^{2+}$ to $Fe^{3+}$ in vacuum condition at such high temperature. The position of H-proton was determined by the refinement of diffraction pattern at low temperature (-2.63$^{\circ}C$). The position is 0.9103${\AA}$ from the O sub(4) location and located at atomic coordinates (x/a=0.138, y/b=0.5, z/c=0.305) with the OH vector almost normal to plane (001). According to the increase of the temperature, $\alpha$* (tetrahedral rotation angle), $t_{oct}$ (octahedral sheet thickness), mean distance increase except 90$0^{\circ}C$ data. But the trend is less clearly relative to unit cell dimension expansion because the expansion is dominant to the interlayer. Also, ${\Psi}$ (octahedral flattening angle) shows no trends as increasing temperature and it may be because the octahedron (M1, M2) is substituted by Mg and Fe.

  • PDF