• Title/Summary/Keyword: 리튬2차 전지

Search Result 147, Processing Time 0.025 seconds

A Study on Safety Evaluation Method of Lithium Secondary Battery Module for Military Operation (리튬 2차전지 모듈의 전장운용을 위한 안전성 평가기법 연구)

  • Yoo, Eun Ji
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.378-386
    • /
    • 2014
  • In this paper, safety evaluation method simulating battlefield environment was studied to verify military operability of commercial lithium secondary battery. Based on the MIL-STD-2105D and STANAG standards, safety tests of lithium secondary battery module were conducted, such as bullet impact, fragment impact, fast cook-off and slow cook-off. All results satisfied the safety evaluation criteria, founded on military standard. It suggests that the lithium secondary module has high potential to be applied in a military power source. The safety evaluation methods developed in this paper can be valuable to propose the new military standards for commercial lithium secondary batteries.

A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB (폐리튬이차전지에서 회수된 황산리튬 전구체로부터 침전제 종류별 수산화리튬 제조 거동 연구)

  • Joo, Soyeong;Kim, Dae-Guen;Byun, Suk-Hyun;Kim, Yong Hwan;Shim, Hyun-Woo
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.44-52
    • /
    • 2021
  • This study investigated the effect of the type of alkaline precipitant used on the synthesis of lithium hydroxide by examining the behavior of lithium hydroxide produced using lithium sulfate recovered from a waste lithium secondary battery as a raw material. The double-replacement reaction (DRR) process was used to remove the impurities contained in the lithium salt precursor of lithium sulfate and to improve the efficiency of the synthesis of lithium hydroxide. The experiment was conducted by control the molar ratio of the precursor ([Li]/[OH]), the reaction temperature, and the composition of the alkaline precipitant (KOH, Ca(OH)2, Ba(OH)2) used for the production of highly-crystalline lithium hydroxide. A secondary solid-liquid separation was performed following the reaction to remove the impurities generated, and the purified aqueous solution of lithium hydroxide was evaporated to remove the moisture and obtain the product as a powder. The crystallinity and synthesis behavior of the product were examined.

Fabrication of Double-layered Carbon Materials for Li-ion Battery (리튬이온 2차 전지용 이중층 탄소재료의 제조)

  • 임연수;정승훈;김희석
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.3
    • /
    • pp.293-299
    • /
    • 2001
  • 이중층 탄소재료가 콜타르핏치와 메조페이스 핏치, 인조흑연, 천연흑연과 코크스를 사용하여 제조되었다. 콜타르 핏치는 톨루엔이나 경유와 같은 유기용매에 용해되어 코팅재로 사용되었다. 메조페이스 핏치, 인조흑연, 천연흑연 및 코크에 대한 콜타르 핏치의 코팅은 X선 회절분석과 CHN 분석을 통해 확인하였다. 코팅된 탄소재료를 질소분위기의 800-100$0^{\circ}C$에서 열처리한 후 리튬이온 전지의 음극으로 사용하기 위하여 2$600^{\circ}C$에서 열처리하였다. 이중층 탄소재료의 성능평가는 동전형태의 반쪽전지를 통해 수행되었는데, 평가는 음극으로서의 충전과 방전을 통해 수행되었다. 이런 충.방전 능력은 탄소재료의 열처리 온도의 변화나 전구체의 종류에 따라 달리 나타났지만 코팅방법의 차이에 의해서는 큰 차이가 없었다. 열처리를 80$0^{\circ}C$에서 한 경우가 100$0^{\circ}C$에서 한 경우보다 높은 충.방전 능력을 나타내었고, 2$600^{\circ}C$에서 흑연화된 것보다 탄화된 재료들이 높은 충.방전 능력을 나타내었다. 결론적으로, 음극재료의 성능은 결정화도, 조성 및 탄소재료의 미세구조에 따라 달라짐을 알 수 있었다.

  • PDF

Pre-leaching of Lithium and Individual Separation/Recovery of Phosphorus and Iron from Waste Lithium Iron Phosphate Cathode Materials (폐리튬인산철 양극재로부터 리튬의 선침출 및 인과 철의 개별적 분리 회수 연구)

  • Hee-Seon Kim;Boram Kim;Dae-Weon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.28-36
    • /
    • 2024
  • As demand for electric vehicles increases, the market for lithium-ion batteries is also rapidly increasing. The battery life of lithium-ion batteries is limited, so waste lithium-ion batteries are inevitably generated. Accordingly, lithium was selectively preleached from waste lithium iron phosphate (LiFePO4, hereafter referred to as the LFP) cathode material powder among lithium ion batteries, and iron phosphate (FePO4) powder was recovered. The recovered iron phosphate powder was mixed with alkaline sodium carbonate (Na2CO3) powder and heat treated to confirm its crystalline phase. The heat treatment temperature was set as a variable, and then the leaching rate and powder characteristics of each ingredient were compared after water leaching using Di-water. In this study, lithium showed a leaching rate of approximately 100%, and in the case of powder heat-treated at 800 ℃, phosphorus was leached by approximately 99%, and the leaching residue was confirmed to be a single crystal phase of Fe2O3. Therefore, in this study, lithium, phosphorus, and iron components were individually separated and recovered from waste LFP powder.

The characteristics of polymer electrolyte for lithium polymer battery

  • Park Soo-Gil;Park Jong-Eun;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 1999
  • A lithium ion battery with polymer electrolyte is expected as a safe and long cycle life battery. This paper reports primarily the recent development results of a solid polymer electrolyte, which is a key factor of the secondary battery system, that has been obtained during the process of the development of a polymer type lithium battery. As a successful result of the solid polymer electrolyte. The ionic conductivity of the solid polymer electrolyte, which is composed of polyacrylonitrile and $LiClO_4\;with\; Al_2O_3$ dissolved as the supporting electrolyte, has been confirmed to be $2.3\times10^{-4} S/cm$ at room temperature.

Zinc Based Anode Materials and Its Application to Lithium Ion Rechargeable Batteries (아연복합산화물 음극활물질과 리튬이차전지 특성)

  • Hwang, Min Ji;Lee, Won Jae;Doh, Chil Hoon;Son, Yeong Guk
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • Graphite is a commercial anode material to have the specific capacity of 372 mAh/g and the true density of 2.2 g/ml. Many effort had been pouring to find out the better material than graphite. Good candidates are silicon, tin, etc. Zinc is also a plausible candidate to have the specific capacity of 412 mAh/g and the true density of 7.14 g/ml. In this study, the Zn based anode material including indium and nickel as minor additives was synthesised. In order to get the homogeneouly mixed Zn-In-Ni composite material, the sol-gel method was used. The anode prepared by Zn-In-Ni composite material has the $1^{st}$ specific capacity of 910 mAh/g. Through prolonged charge-discharge cycling, the specific capacities were reduced to 365 (at $31^{st}$ cycle) and 378 mAh/g (at $62^{th}$ cycle). The $1^{st}$ Ah efficiency was 45% and Ah efficiencies were exhibited at the prolonged cycle.

Chemical bonding of ion-exchange type sites in spinel-type $Li_{1.6}Mn_{1.6}O_4$ (이온 교환형 스피넬 $Li_{1.6}Mn_{1.6}O_4$의 화학결합)

  • ;;Shuji KASAISHI;Ramesh CHITRAKA;Kenta OOI
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.79-79
    • /
    • 2003
  • 리튬은, 세라믹스, 2차전지, 냉매흡착제, 촉매, 의약품등 넓은 분야에 이용되고 있다. 하지만, 자원으로서 리튬의 양은 한정되어 있으며, 리튬의 안정적인 확보는 장래 에너지공급 둥을 고려할 때 매우 중요한 문제의 하나로 대두되고 있다. 이와 같이 리튬의 안정적인 공급을 위한 해결수단으로써 리튬을 바다에서 채취하고자 하는 연구가 주목을 받고 있다. 본 연구는 리튬이온 흡착제 성능을 높이기 위해 새로 개발된 스피넬형 L $i_{1.6}$M $n_{1.6}$ $O_4$의 전자상태 및 화학결합을 통하여, 리튬 이온의 거동 및 각 원자간의 상호작용에 대해 알아보는 것을 목적으로 하고 있다. 연구방법으로는 DV-X$\alpha$분자궤도법(1-3)을 이용한 클러스터계산을 수행했고, 멀리켄의 전자밀도 해석을 통해 각 원자의 이온성 및 각 원자간의 상호작용에 대해 고찰했다.다.다.

  • PDF