본 연구에서는 습식분쇄, 분무건조 및 열처리 공정을 통해 알루미늄 및 마그네슘이 치환된 구형의 스피넬계 $Li_{1.10}Mn_{1.86}Al_{0.02}Mg_{0.02}O_4$ 양극재료를 합성하였다. 이때 공정변수로는 전구체를 만드는 분무건조공정에서 고형분(20~30 wt%)을, 열처리 공정에서는 산소분위기 유무를 변수로 하였다. 제조된 모든 양극재료는 상온에서 매우 우수한 전지특성을 보여주었으나, 출력특성에 있어서는 5C 방전곡선이 기준이 되는 0.1C 방전곡선 대비 서로 상이한 거동을 보임을 확인하였다. 이러한 고출력 거동의 차이는 첫째, 충방전 곡선상에서 3.3 V(vs. $Li/Li^+$) plateau 구간의 반응 용량 측정을 통해 양극재료의 산소결함 수준의 차이로 인한 것임을 확인하였다. 공기분위기에서 제조한 양극재료는 산소분위기에서 제조한 것에 비해 두 배 이상의 plateau 거동을 보이고 있으며, 이러한 현상으로부터 제조된 양극재료의 산소결함 정도와 방전초기 과전압 정도는 상관관계가 있음을 확인할 수 있었다. 둘째로는 임피던스 측정을 통해 산출된 확산계수로부터 고형분이 상대적으로 낮은 상태에서 제조된 양극재료가 그렇지 않은 양극재료에 비해 상대적으로 절반 이하 낮은 값을 가지고 있음을 알 수 있었다. 또한 입자 내부 형상 분석을 통한 내부 치밀도 및 임피던스 분석을 통한 확산속도의 차이를 확인함으로써, 방전 말단의 과전압 거동은 입자 내부의 리튬이온 확산속도와 관련이 있음을 확인하였다. 확산계수는 고형분이 상대적으로 낮은 20 wt% 상태에서 제조된 양극재료의 경우가 가장 낮으며, 이는 동일 양극재료의 내부 공극률이 가장 높은 결과와 부합하는 것이다.
리튬 이온이 intercalation되어 스핀넬 구조를 이루고 있는 $Li_{x}Mn_{2}O_{4}(0.2{\leq}x{\leq}2.0)$의 구조적 특성을 X-선 회절분석과 Li/1M $LiClO_{4}$-propylene carbonate solution/$Li_{x}Mn_{2}O_{4}$ 전지에서 이들의 구조적 특징에 의한 전기화학적 특성을 연구하였다. $Li_{x}Mn_{2}O_{4}$의 전기화학적 특성에 대한 조성과 반응온도의 영향은 상전이 현상과, 결정 상수 측정과 열분석에 의하여 연구하였다. 산처리 후 $Li_{x}Mn_{2}O_{4}$는 거의 순수한 ${\lambda}-MnO_{2}$구조로 상전이 되었으며 이때 격자상수 $a_{c}$가 8.255에서 $8.031\;{\AA}$으로 수축되었다. $Li_{x}Mn_{2}O_{4}$의 조성 범위가 $0.2{\leq}x{\leq}0.6$일 때 격자상수 $8.255\;{\AA}$의 단일상을 나타내며 3.9~3.7 V의 전위 평탄 영역을 나타낸다.
본 연구에서는 첨가물이 전기화학적 성능에 미치는 효과를 알아보기 위해 실험변수로서 첨가물 $Al^{3+}$를 사용하였다. Zero-strain 삽입 혼합물로 알려진 $Li_{4}Ti_{5]O_{12}$에 $Al^{3+}$가 첨가된 $Li_{3.95}Al_{0.15}Ti_{4.9}O_{12}$를 high energy ball milling (HEBM)을 사용하여 고상반응으로 제조한 후에, $800,\;900,\;1000^{\circ}C$에서 열처리하여 시료를 제조하였다. 합성물질의 구조적 특성과 입자의 표면분석을 하기 위해 XRD (X-ray diffraction)와 SEM (scanning electron microscopy)을 사용하였으며, 이때의 입자의 분포는 대략 $0.2{\sim}0.6\;{\mu}m$ 정도로 측정되었다. 충/방전 실험은 $1.0{\sim}3.0 V$에서 하였으며, 가역용량, 사이클 안정성, 평탄 전압 등을 알아보았다. $Li_{3.95}Al_{0.15}Ti_{4.9}O_{12}$의 충방전 용량은 138 mAh/g이었다.
탄소나노튜브(CNT)와 합성기판 사이의 전도성 향상을 목적으로, 현재 리튬이온이차전지 등의 분야에서 전극으로 이용되고 있는 구리 호일을 합성기판으로 하여, 그 위에 수직배향 CNT 성장의 합성 최적화를 도모하였다. 합성은 수평식 CVD 합성장비를 이용하였으며, 최적의 합성조건은 구리호일 위에 10 nm의 Al2O3 버퍼층과 1 nm 두께의 Fe 촉매층을 증착한 후, 아세틸렌 가스를 이용하여 $800^{\circ}C$에서 20분간 합성한 조건으로 설정하였다. CNT는 base-growth의 성장형태를 따랐고, Fe 1 nm 두께인 경우, $7.2{\pm}1.5nm$의 촉매나노입자가 형성되었으며, 이를 이용하여 $800^{\circ}C$에서 20분 성장결과, 직경 8.2 nm, 길이 $325{\mu}m$의 수직배향 CNT를 얻을 수 있었다. 합성시간이 길어져도 CNT의 결정성, 직경 및 겹(wall) 수에는 큰 변화가 없었다. 끝으로, 구리호일 위에 수직 성장시킨 CNT의 전계방출 특성을 측정한 결과, 실리콘 산화막 위에 성장시킨 CNT와 비교하여, 월등히 낮은 전계방출 문턱전압과 10배 정도 높은 전계향상계수를 보였다. 이는 CNT와 금속기판 사이의 계면에서 전기전도도가 향상된 결과에 기인하는 것으로 사료된다.
리튬이온 전지의 양극물질로써, 초임계 수열합성법을 이용해 만들어진 분말은 각각 $850^{\circ}C$와 $900^{\circ}C$ 공기 분위기에서 10시간씩 소성하여 $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$를 합성하였다. 온도를 조절함에 따라 합성된 분말은 어떠한 영향을 받는지 x-ray pattern, SEM-image, 물리적 특성과 전기화학적 거동을 관찰해 연구하였다. 그 결과, $900^{\circ}C$에서 열처리된 물질의 입자크기가 $850^{\circ}C$에서 열처리된 물질에 비해 더 큰 것으로 나타났고, 특히 초기 가역용량 163.84 mAh/g (0.1 C/2.0-4.3 V), 186.87 mAh/g (0.1 C/2.0-4.5 V)의 가역용량을 나타내면서 훌륭한 전기화학적 거동을 보였으며, 50th cycle에서도 91.49%(0.2 C/2.0-4.3 V)와 90.36%(0.2 C/2.0-4.5 V)의 높은 용량 유지율을 보였다.
ESS는 각 제품의 품질 및 안전성이 보장되더라도 현장에서 조립하는 사람 혹은 환경에 따라 완성 품질이 달라지므로, 설치공정의 표준화 및 현장에 설치된 ESS에 대한 안전성 시험평가기술의 개발이 요구되고 있다. 또한, 선진국에서는 ESS의 성능을 보다 정확하고 신뢰성 있게 검증하기 위하여, H/W에 의한 성능 시험뿐만 아니라 S/W에 의한 성능검증도 요구하고 있는 실정이다. 따라서 본 논문에서는 현장에 설치되어 있는 ESS의 성능을 평가하기 위하여 SAT(Site Acceptance Test)용 평가알고리즘을 제안하였다. 또한, 전력계통 상용해석 프로그램인 PSCAD/EMTDC를 이용하여 ESS의 SAT용 시험장치를 모델링 하고, 이를 바탕으로 30[kW]급 시험장치를 구현하였다. 상기에서 제안한 평가알고리즘을 이용하여 다양한 시뮬레이션과 특성시험을 비교한 결과, 용량 및 Round-trip 효율, Duty-cycle 추종특성, LVRT 특성, Anti-islanding특성에 대한 ESS의 성능을 정확하게 평가할 수 있었고, 모델링에 의한 특성과 시험장치에 의한 특성이 거의 동일하게 나타나, 본 논문에서 제안한 평가알고리즘의 유용성을 확인하였다.
본 연구에서는 리튬이온전지 음극소재인 흑연의 낮은 이론 용량을 개선하기 위해 흑연/실리콘/피치 음극 복합소재의 전기화학적 특성을 조사하였다. 흑연의 표면에 양친성 물질인 Polyvinylpyrrolidone (PVP)을 코팅한 후 (3-Aminopropyl)triethoxysilane(APTES)로 표면 처리된 실리카를 결합시켜 흑연/실리카를 합성하였으며, 실리카의 질량비에 따라 피치 소재로 코팅한 후 마그네슘 열 환원법을 통하여 실리카를 실리콘으로 환원시켜 흑연/실리콘/피치 복합소재를 제조하였다. 흑연/실리콘/피치 음극소재는 XRD, SEM과 TGA를 통해 물리적 특성을 분석하였으며, 전기화학적 특성은 1.0 M $LiPF_6$ (EC:DMC:EMC=1:1:1 vol%)의 전해액을 사용하여 충 방전 사이클, 율속, 순환전압전류, 임피던스 테스트를 통해 조사하였다. 제조된 흑연/실리콘/피치 복합소재의 실리카 비율이 28.5 wt% 일때 537 mAh/g의 높은 초기 방전 용량을 나타내었으며, 30 사이클까지의 사이클 성능은 95%로 매우 우수한 사이클 안정성과 율속 테스트에서 0.1 C/0.2 C 일 때 98% 회복을 나타냄을 확인하였다.
금속산화물 나노구조물은 고감도 가스센서 및 대용량의 리튬이온 전지와 같은 첨단 응용 분야에 활용될 수 있는 유망한 소재로 알려져 있다. 본 연구에서는 산화주석(SnO) 나노구조물을 두 영역 전기로 장치를 이용하여 다양한 온도에서 Si 웨이퍼 기판 위에 성장시켰다. 원료물질인 이산화주석($SnO_2$) 파우더를 알루미나 도가니 속에 넣어서 $1070^{\circ}C$에서 기상화시켰으며, 이송가스인 고순도 Ar 가스를 1000 sccm으로 흘려주었다. SnO 나노구조물은 $350{\sim}450^{\circ}C$, 545 Pa 조건에서 30분 동안 Si 기판 위에 성장되었다. 성장된 SnO 나노구조물의 표면형상을 전계방출형 주사전자현미경(FE-SEM)과 원자힘 현미경(AFM)으로 조사하였다. 또한 성장된 SnO 나노구조물의 결정학적 특징을 Raman 분광학으로 조사하였다. 그 결과 성장된 산화주석은 SnO 상을 가지고 있었다. 기판의 온도가 증가함에 따라 성장된 SnO 나노구조물의 두께와 결정립의 크기도 $424^{\circ}C$까지는 증가하였다. $450^{\circ}C$에서 성장된 SnO 나노구조물은 복잡한 다결정 형태의 표면형상을 나타내었지만, $350{\sim}424^{\circ}C$ 범위에서 성장된 SnO 나노구조물은 기판에 나란한 형태의 단순한 결정구조를 나타내었다.
We demonstrate a direct growth of carbon nanotubes (CNTs) on the surface of LiFePO4 (LFP) powders for use in lithium-ion batteries (LIB). LFP has been widely used as a cathode material due to its low cost and high stability. However, there is a still enough room for development to overcome its low energy density and electrical conductivity. In this study, we fabricated novel structured composites of LFP and CNTs (LFP-CNTs) and characterized the electrochemical properties of LIB. The composites were prepared by direct growth of CNTs on the surface of LFP using a rotary chemical vapor deposition. The growth temperature and rotation speed of the chamber were optimized at 600 ℃ and 5 rpm, respectively. For the LIB cell fabrication, a half-cell was fabricated using polytetrafluoroethylene (PTFE) and carbon black as binder and conductive additives, respectively. The electrochemical properties of LIBs using commercial carbon-coated LFP (LFP/C), LFP with CNTs grown for 10 (LFP/CNTs-10m) and 30 min(LFP/CNTs-30m) are comparatively investigated. For example, after the formation cycle, we obtained 149.3, 160.1, and 175.0 mAh/g for LFP/C, LFP/CNTs-10m, and LFP/CNTs-30m, respectively. In addition, the improved rate performance and 111.9 mAh/g capacity at 2C rate were achieved from the LFP/CNTs-30m sample compared to the LFP/CNTs-10m and LFP/C samples. We believe that the approach using direct growth of CNTs on LFP particles provides straightforward solution to improve the conductivity in the LFP-based electrode by constructing conduction pathways.
리튬이온 이차전지의 고용량화를 위해 high-Ni계 양극 활물질이 크게 주목받고 있으나, Ni 함량이 높아짐에 따라 고온 안정성이 감소하여 수명저하가 발생하게 된다. 본 연구에서는 $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM622)의 합성공정 중에서 전구체인 전이금속 수산화물과 리튬염의 열처리 과정에 알루미나 입자를 첨가함으로써 추가적인 표면처리 공정없이 활물질 특성을 개선시키고자 하였다. 알루미나를 첨가하게 되면 고온 사이클 수명이 개선되었으며, 특히 나노크기의 알루미나를 사용하는 경우에 초기용량의 감소도 적고 수명도 개선됨을 확인하였다. 그리고, 나노 알루미나를 함량별로 추가한 결과로 표면형상이 점차 변화함과 동시에 격자상수의 감소가 발생하는 것이 관찰되어 표면코팅과 구조 내 치환이 동시에 발생하고 있음을 확인하였다. LSTA (linear-sweep thermmametry)를 사용하여 알루미나의 함량이 증가할 수록 부반응이 감소하며 고온 안정성이 증가하는 것을 확인하였다. 또한 전이금속 대비 Al을 2.5 mol% 추가하는 경우에 가장 우수한 고온 사이클 성능이 나타나는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.