리튬이온 배터리의 상태를 모니터링 하는 방법에 있어서, 대표적으로 배터리의 충전 상태(SOC)와 배터리의 건강 상태(SOH)를 추정하여 상태 지표로 사용된다. 본 연구에서는 리튬 이온 배터리의 상태 지표를 위한 용량 정보의 추정을 데이터 기반의 근사 모델을 이용하여 수행하였다. 다양한 근사 모델링 방법을 적용하여 추정되는 용량 정보를 비교하고, 모델링 방법에 따른 용량 추정 성능을 확인하였다. 또한, 이를 바탕으로 리튬이온 배터리의 용량을 예측하고 예측 성능을 분석하였다. 본 연구를 통하여 근사모델을 이용하는 경우, 리튬이온 배터리의 용량 추정은 물론 예측을 수행하는 방법으로서의 활용 가능성을 확인하였으며, 또한 제안하는 방법을 이용하여 보유하고 있는 모니터링 데이터를 활용하여 리튬이온 배터리의 성능을 평가하는데 있어 효과적으로 활용될 수 있을 것으로 판단된다.
KIPS Transactions on Software and Data Engineering
/
v.12
no.3
/
pp.133-140
/
2023
The performance of lithium ion batteries depends on the usage environment and the combination ratio of cathode materials. In order to develop a high-performance lithium-ion battery, it is necessary to manufacture the battery and measure its performance while varying the cathode material ratio. However, it takes a lot of time and money to directly develop batteries and measure their performance for all combinations of variables. Therefore, research to predict the performance of a battery using an artificial intelligence model has been actively conducted. However, since measurement experiments were conducted with the same battery in the existing published battery data, the cathode material combination ratio was fixed and was not included as a data attribute. In this paper, we define a training data model required to develop an artificial intelligence model that can predict battery performance according to the combination ratio of cathode materials. We analyzed the factors that can affect the performance of lithium-ion batteries and defined the mass of each cathode material and battery usage environment (cycle, current, temperature, time) as input data and the battery power and capacity as target data. In the battery data in different experimental environments, each battery data maintained a unique pattern, and the battery classification model showed that each battery was classified with an error of about 2%.
저궤도 인공위성에서 배터리는 태양전지 배열기에서 생성된 전력을 저장하여 탑재체 구동과 식구간 위성의 동작 유지를 위하여 사용된다. 최근 상용 배터리 시장에서도 리튬이온 배터리의 보급이 많이 이루진거와 마찬가지로 인공위성에서도 리튬이온 배터리의 사용이 보편화 되는 추세이다. 리튬이온 배터리가 기존에 인공위성에서 사용되던 니켈카드늄이나 니켈수소 배터리에 비하여 자연 방전량이 적다고는 하지만 이 또한 존재하며, 초기 위성 발사시 태양전지 배열기의 전개를 통한 전력 생산이 이루어질 때까지 위성의 동작을 보장하고 임수종료까지 에너지를 충방전 할 수 있는 상태를 유지하여야 하므로 위성 발사 전까지 배터리의 상태를 최적으로 유지해야 함은 필수적이다. 본 연구에서는 저궤도 인공위성의 발사 전까지 배터리의 상태를 최적화 하기위한 배터리 운용에 관하여 기술하며, 배터리 상태에 대한 실측 데이터를 제시하여 배터리의 정상상태를 검증하였다.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.42
no.2
/
pp.150-157
/
2014
Li-Ion battery is used in the most satellites now due to advantages such as weight, thermal dissipation and self discharge compared to the previous generations of electrochemical batteries. The performance analysis model of the Li-Ion battery is needed to aid the design of new satellite electrical power subsystem. This paper develops the performance analysis model of the Li-Ion battery to apply to the electrical power subsystem design and energy balance analysis on geostationary orbit. The analysis model receives the satellite bus power, solar array power and battery temperature and gives the battery voltage, charge and discharge currents, taper index, state of charge and power dissipation. The results from the performance analysis are compared and analyzed with the flight data to verify the model. The compared results show satisfactory without significant difference with the flight data.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.6
/
pp.1151-1156
/
2023
In this paper, we propose a deep learning model that utilizes charge/discharge data from initial lithium-ion batteries to predict the remaining useful life of lithium-ion batteries. We build the DMP using the PNP model. To demonstrate the performance of DMP, we organize DML using the LSTM model and compare the remaining useful life prediction performance of lithium-ion batteries between DMP and DML. We utilize the RMSE and RMSPE error measurement methods to evaluate the performance of DMP and DML models using test data. The results reveal that the RMSE difference between DMP and DML is 144.62 [Cycle], and the RMSPE difference is 3.37 [%]. These results indicate that the DMP model has a lower error rate than DML. Based on the results of our analysis, we have showcased the superior performance of DMP over DML. This demonstrates that in the field of lithium-ion batteries, the PNP model outperforms the LSTM model.
같은 정격을 가진 배터리 일지라도 온도나 노화에 따라 용량, Direct current internal resistance(DCIR)이 서로 다른 값을 나타낸다. 또한, 용량과 DCIR의 상관관계가 항상 성립하는 것은 아니다. 이러한 특성으로 인해 펄스파워 관련 State of health(SOH)를 알기 어렵다. 이번 논문에서는 해밍네트워크를 이용한 리튬이온 배터리의 특성을 분석, 연구하였다. 펄스파워는 전압의 함수이다. 배터리 충방전 프로파일을 이용하여 전압패턴들을 선정한 후 특성 파라미터를 이용하여 해밍네트워크에 사전에 학습시킨다. 다음, 임의의 배터리 데이터를 통계 처리하여 전압패턴 특성 파라미터를 추출한 후 신경회로망에 입력하여 학습한 전압패턴들 중 임의의 배터리에 맞는 배터리를 선정한다. 패턴선정은 상온에서 10개의 리튬이온 프레시 배터리(1.3Ah)가 이용되었고 검증을 위해 DCIR 값을 구하였다.
본 논문에서는 리튬공기(Li-Air) 배터리를 소개하고 전기화학적 특성분석을 간단히 진행하였다. 우선, 리튬공기 배터리의 동작원리를 소개하고 기존 리튬이온(Li-Ion) 배터리와의 차이점을 제시하였다. 각 만방전압에 따른 배터리의 전기화학적 특성분석을 위해 방전용량 및 임피던스 특성커브를 분석하였다. 더불어, 향후 State-of-charge(SOC) 추정을 위한 데이터를 위해 Open-circuit voltage(OCV) 및 실제 충방전 전류 프로파일에 따른 충방전 전압을 분석하였다.
배터리팩에 사용되는 리튬이온 배터리는 제조공정 과정에 따라 각각의 배터리 마다 부피에 의한 물리적 특성, 내부 저항, 자가 방전률, 셀 용량, 배터리 노화 속도 등 여러 가지 특성이 다르다. 배터리 팩의 효율적 운용을 위해 이러한 단위 셀 간편차를 최소화 하는 것이 필요하다. 본 논문에서는 두 종류의 고용량 리튬이온 배터리를 선정하여 진동 충격 실험 전 후 개방 회로 전압(open circuit voltage, OCV)를 측정하고 Matlab을 사용하여 비교 분석 하였다. OCV 비교 분석 데이터를 이용하여 통계적 분석 기반 셀 스크리닝을 진행하였고 이에 대한 결과를 비교 분석하였다.
리튬 이온 배터리는 전압, 전류, 온도 등의 측정 정보를 기반으로 용량, 수명 등 배터리의 상태를 추정해야 하며 이를 위해 다양한 방법들이 활용되고 있다. 이러한 추정 정보들은 결국 배터리 관리 시스템에서 수행하는 핵심 기능이며 효율적이고 안전한 제어를 수행하기 위해 필수적인 정보이다. 본 연구에서는 배터리 팩의 실험 데이터를 이용하여 근사 모델을 개발하고 이를 이용하여 배터리 팩의 용량을 추정하는 방법에 대한 연구를 수행하였다. 기존 수학적 모델 기반의 알고리즘을 활용하는 방법과 통계적인 기법을 활용하는 방법으로 구현하는 것과 달리, 충분한 데이터 확보가 가능한 경우, 데이터를 표현하는 근사 모델을 생성하고 이에 대한 활용 가능성을 확인하였다.
본 논문에서는 리튬이온 배터리의 전기적인 특성 실험을 통해 열 해석에 필요한 인자를 추출하고 이를 이용하여 열 해석의 상용 프로그램인 COMSOL과 ANSYS에서 서로 다른 방법으로 열 해석을 진행한다. 두 프로그램의 열 해석을 통해 얻은 데이터와 측정 데이터를 비교분석 한 결과 유사 경향성을 확인하였고, 이를 통해 전기적 열 해석 모델의 신뢰성을 확보한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.