• Title/Summary/Keyword: 리자다이트

Search Result 2, Processing Time 0.015 seconds

Mineralogy of Garnierite from New Caledonian Ni Lateritic Ore (뉴칼레도니아 니켈 라테라이트 광석 내 가니어라이트의 광물학적 특징)

  • Cho, Hyen-Goo;Kim, Soon-Oh;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.253-263
    • /
    • 2011
  • Mineralogical characteristics of garnierite ores from the Nakety, Kouaoua, and Ouaco Ni laterite deposits in New Caledonia are investigated using optical microscopy, powder X-ray diffractometer, and electron proble microanalyzer. Green garnierite ores have colloform, cellular, and boxwork texture, which are formed by precipitation under low temperature surface environment. They are mainly composed of Ni-bearing talc~willemseite series mineral and partly of lizardite. In Ni-bearing talc~willemseite series mineral, NiO contents are Ouaco (average 40.63%), Nakety (average 28.58%), and Kouaoua (average 24.90%), in descending order. Ni atomic percentage replacing Mg in octahedral site are 43.5~85.0%. Dark brown garnierite ores show cellular or boxwork texture, and consist of lizardite~Ni lizardite with some Ni-bearing talc~willemseite series mineral. Ni contents in lizardite~Ni lizardite are 1.14~4.06 wt. % and Ni atomic percentage replacing Mg in octahedral site 1.7~6.8%. Low NiO content in dark brown garnierite attributes to high Fe content replacing Mg in octahedral site.

A Molecular Dynamics Simulation Study of Trioctahedral Clay Minerals (삼팔면체 점토광물에 대한 분자동역학 시뮬레이션 연구)

  • Lee, Jiyeon;Lee, Jin-Yong;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.161-172
    • /
    • 2017
  • Clay minerals play a major role in the geochemical cycles of metals in the Critical Zone, the Earth surface-layer ranging from the groundwater bottom to the tree tops. Atomistic scale research of the very fine particles can help understand the fundamental mechanisms of the important geochemical processes and possibly apply to development of hybrid nanomaterials. Molecular dynamics (MD) simulations can provide atomistic level insights into the crystal structures of clay minerals and the chemical reactivity. Classical MD simulations use a force field which is a parameter set of interatomic pair potentials. The ClayFF force field has been widely used in the MD simulations of dioctahedral clay minerals as the force field was developed mainly based on dioctahedral phyllosilicates. The ClayFF is often used also for trioctahedral mineral simulations, but disagreement exits in selection of the interatomic potential parameters, particularly for Mg atom-types of the octahedral sheet. In this study, MD simulations were performed for trioctahedral clay minerals such as brucite, lizardite, and talc, to test how the two different Mg atom types (i.e., 'mgo' or 'mgh') affect the simulation results. The structural parameters such as lattice parameters and interatomic distances were relatively insensitive to the choice of the parameter, but the vibrational power spectra of hydroxyls were more sensitive to the choice of the parameter particularly for lizardite.