• Title/Summary/Keyword: 리스크 대응

Search Result 200, Processing Time 0.023 seconds

The Effect of Artificial Intelligence on Human Life by the Role of Increasing Value Added in the Industrial Sector (인공지능의 산업 분야 부가 가치 증대 역할에 따른 정책 수립 및 인간 생활에 미치는 영향)

  • Kim, Ji-Hyun;Yu, Ji-in;Jung, Ji-Won;Choi, Hun;Han, Jeong-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.505-508
    • /
    • 2022
  • Artificial intelligence itself has the value of advancing technology, and it is used in various industrial fields to enhance the added value of products and services produced in various industries. Therefore, regulations and policies related to artificial intelligence should be considered from a broader perspective. However, researchers have different understandings, and there is no agreement on how to regulate artificial intelligence. Therefore, we will examine the direction of government regulation on artificial intelligence technology in an exploratory manner. First, accountability, transparency, stability, and fairness are derived as the goals of artificial intelligence regulation, and the system itself, development process, and utilization process are set as the scope of regulation, and users and developers are subject to regulation. The academic significance of this study can be seen as analyzing the current level of artificial intelligence technology and laying the foundation for consistent discussions on artificial intelligence regulations in the future. Considering the life cycle from AI development to application, what is important is the balance of promotion policies to promote the artificial intelligence industry and regulatory policies to respond to the resulting risks. The goal of law related to artificial intelligence is to establish a system in which artificial intelligence can be accommodated in a positive direction to all participants, including developers, companies, and users.

  • PDF

Port Performance of Fully Automated Container Terminal on the COVID Pandemic (코로나 팬데믹에서 완전자동화항만의 성과 비교 연구)

  • BoKyung Kim;GeunSub Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.327-328
    • /
    • 2022
  • The recent spread of the corona pandemic and a temporary surge in demand for consumer goods have resulted in an increase in port cargo volume, and the resulting port congestion is coupled with a shortage of labor in the port, exacerbating the global supply chain chaos. Supply chain disruptions will increase logistics costs and ultimately increase global inflationary pressures. In this situation, the role of the port, which is the nodal point between land and sea, is gradually becoming more important. And fully automated ports that are operated unmanned are evaluated as being able to respond stably and flexibly by reducing operational risks in situations such as COVID-19. Therefore, this study compared the operational performance of fully automated and non-fully automated terminals within the same port before and after the corona outbreak, and analyzed the fully automated terminal was stable in actual operation. As a result of the analysis, the fully automated terminal showed stable operating efficiency in all aspects of operational performance compared to the non-fully automated terminal even under severe port congestion due to COVID-19.

  • PDF

Economic Impacts of Carbon Reduction Policy: Analyzing Emission Permit Price Transmissions Using Macroeconometric Models (탄소감축 정책의 경제적 영향: 거시계량모형에 기반한 배출권가격 변동 효과 분석)

  • Jehoon Lee;Soojin Jo
    • Environmental and Resource Economics Review
    • /
    • v.33 no.1
    • /
    • pp.1-32
    • /
    • 2024
  • The emissions trading system stands as a pivotal climate policy in Korea, incentivizing abatement equivalent to 87% of total emissions (as of 2021). As the system likely has a far-reaching impact, it is crucial to understand how the real economic activity, energy sector, as well as environment would be influenced by its implementation. Employing a macroeconometric model, this paper is the first study analyzing the effects of the Korean emissions trading policy. It interconnects the Korean Standard Industrial Classification (Economy), Energy Balance (Energy), and National Inventory Report (Environment), enhancing its real-world explanatory power. We find that a 50% increase in emission permit price over four years results in a decrease in greenhouse gas emissions (-0.043%) and downward shifts in key macroeconomic variables, including real GDP (-0.058%), private consumption (-0.003%), and investment (-0.301%). The price increase in emission permit is deemed crucial for achieving greenhouse gas reduction targets. To mitigate transition risk associated with price shocks, revenue recycling using auction could ensure the sustainability of the economy. This study confirms the comparative advantage of expanded current transfers expenditure over corporate tax reduction, particularly from an economic growth perspective.

Financial Products Recommendation System Using Customer Behavior Information (고객의 투자상품 선호도를 활용한 금융상품 추천시스템 개발)

  • Hyojoong Kim;SeongBeom Kim;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.111-128
    • /
    • 2023
  • With the development of artificial intelligence technology, interest in data-based product preference estimation and personalized recommender systems is increasing. However, if the recommendation is not suitable, there is a risk that it may reduce the purchase intention of the customer and even extend to a huge financial loss due to the characteristics of the financial product. Therefore, developing a recommender system that comprehensively reflects customer characteristics and product preferences is very important for business performance creation and response to compliance issues. In the case of financial products, product preference is clearly divided according to individual investment propensity and risk aversion, so it is necessary to provide customized recommendation service by utilizing accumulated customer data. In addition to using these customer behavioral characteristics and transaction history data, we intend to solve the cold-start problem of the recommender system, including customer demographic information, asset information, and stock holding information. Therefore, this study found that the model proposed deep learning-based collaborative filtering by deriving customer latent preferences through characteristic information such as customer investment propensity, transaction history, and financial product information based on customer transaction log records was the best. Based on the customer's financial investment mechanism, this study is meaningful in developing a service that recommends a high-priority group by establishing a recommendation model that derives expected preferences for untraded financial products through financial product transaction data.

A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles (산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로)

  • WonHee Kim;YoungOk Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.287-316
    • /
    • 2023
  • As global energy crisis and the COVID-19 pandemic have emerged as social issues, there is a growing demand for companies to move away from profit-centric business models and embrace sustainable management that balances environmental, social, and governance (ESG) factors. ESG activities of companies vary across industries, and industry-specific weights are applied in ESG evaluations. Therefore, it is important to develop strategic management approaches that reflect the characteristics of each industry and the importance of each ESG factor. Additionally, with the stance of strengthened focus on ESG disclosures, specific guidelines are needed to identify and report on sustainable management activities of domestic companies. To understand corporate sustainability strategies, analyzing ESG reports and news articles by industry can help identify strategic characteristics in specific industries. However, each company has its own unique strategies and report structures, making it difficult to grasp detailed trends or action items. In our study, we analyzed ESG reports (2019-2021) and news articles (2019-2022) of six companies in the 'Finance,' 'Manufacturing,' and 'IT' sectors to examine the sustainability strategies of leading domestic ESG companies. Text mining techniques such as keyword frequency analysis and topic modeling were applied to identify industry-specific, ESG element-specific management strategies and issues. The analysis revealed that in the 'Finance' sector, customer-centric management strategies and efforts to promote an inclusive culture within and outside the company were prominent. Strategies addressing climate change, such as carbon neutrality and expanding green finance, were also emphasized. In the 'Manufacturing' sector, the focus was on creating sustainable communities through occupational health and safety issues, sustainable supply chain management, low-carbon technology development, and eco-friendly investments to achieve carbon neutrality. In the 'IT' sector, there was a tendency to focus on technological innovation and digital responsibility to enhance social value through technology. Furthermore, the key issues identified in the ESG factors were as follows: under the 'Environmental' element, issues such as greenhouse gas and carbon emission management, industry-specific eco-friendly activities, and green partnerships were identified. Under the 'Social' element, key issues included social contribution activities through stakeholder engagement, supporting the growth and coexistence of members and partner companies, and enhancing customer value through stable service provision. Under the 'Governance' element, key issues were identified as strengthening board independence through the appointment of outside directors, risk management and communication for sustainable growth, and establishing transparent governance structures. The exploration of the relationship between ESG disclosures in reports and ESG issues in news articles revealed that the sustainability strategies disclosed in reports were aligned with the issues related to ESG disclosed in news articles. However, there was a tendency to strengthen ESG activities for prevention and improvement after negative media coverage that could have a negative impact on corporate image. Additionally, environmental issues were mentioned more frequently in news articles compared to ESG reports, with environmental-related keywords being emphasized in the 'Finance' sector in the reports. Thus, ESG reports and news articles shared some similarities in content due to the sharing of information sources. However, the impact of media coverage influenced the emphasis on specific sustainability strategies, and the extent of mentioning environmental issues varied across documents. Based on our study, the following contributions were derived. From a practical perspective, companies need to consider their characteristics and establish sustainability strategies that align with their capabilities and situations. From an academic perspective, unlike previous studies on ESG strategies, we present a subdivided methodology through analysis considering the industry-specific characteristics of companies.

A Correlation Analysis between International Oil Price Fluctuations and Overseas Construction Order Volumes using Statistical Data (통계 데이터를 활용한 국제 유가와 해외건설 수주액의 상관성 분석)

  • Park, Hwan-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.273-284
    • /
    • 2024
  • This study investigates the impact of international oil price fluctuations on overseas construction orders secured by domestic and foreign companies. The analysis employs statistical data spanning the past 20 years, encompassing international oil prices, overseas construction orders from domestic firms, and new overseas construction orders from the top 250 global construction companies. The correlation between these variables is assessed using correlation coefficients(R), determination coefficients(R2), and p-values. The results indicate a strong positive correlation between international oil prices and overseas construction orders. The correlation coefficient between domestic overseas construction orders and oil prices is found to be 0.8 or higher, signifying a significant influence. Similarly, a high correlation coefficient of 0.76 is observed between oil prices and new orders from leading global construction companies. Further analysis reveals a particularly strong correlation between oil prices and overseas construction orders in Asia and the Middle East, potentially due to the prevalence of oil-related projects in these regions. Additionally, a high correlation is observed between oil prices and orders for industrial facilities compared to architectural projects. This suggests an increase in plant construction volumes driven by fluctuations in oil prices. Based on these findings, the study proposes an entry strategy for navigating oil price volatility and maintaining competitiveness in the overseas construction market. Key recommendations include diversifying project locations and supplier bases; utilizing hedging techniques for exchange rate risk management, adapting to local infrastructure and market conditions, establishing local partnerships and securing skilled local labor, implementing technological innovations and digitization at construction sites to enhance productivity and cost reduction The insights gained from this study, coupled with the proposed overseas expansion strategies, offer valuable guidance for mitigating risks in the global construction market and fostering resilience in response to international oil price fluctuations. This approach is expected to strengthen the competitiveness of domestic and foreign construction firms seeking success in the international arena.

Enhancing Technology Learning Capabilities for Catch-up and Post Catch-up Innovations (기술학습역량 강화를 통한 추격 및 탈추격 혁신 촉진)

  • Bae, Zong-Tae;Lee, Jong-Seon;Koo, Bonjin
    • The Journal of Small Business Innovation
    • /
    • v.19 no.2
    • /
    • pp.53-68
    • /
    • 2016
  • Motivation and activities for technological learning, entrepreneurship, innovation, and creativity are driving forces of economic development in Asian countries. In the early stages of technological development, technological learning and entrepreneurship are efficient ways in which to catch up with advanced countries because firms can accumulate skills and knowledge quickly at relatively low risk. In the later stages of technological development, however, innovation and creativity become more important. This study aims to identify a) the factors (learning capabilities) that influence technological learning performance and b) barriers to enhancing innovation capabilities for the creative economy and organizations. The major part of this study is related to learning capabilities in the post-catch-up era. Based on a literature review and observations from Korean experiences, this study proposes a technological learning model composed of various influencing factors on technological learning. Three hypotheses are derived, and data are collected from Korean machine tool manufacturers. Intense interviews with CEOs and R&D directors are conducted using structured questionnaires. Statistical analysis, such as correlation and ANOVA are then carried out. Furthermore, this study addresses how to enhance innovation capabilities to move forward. Innovation enablers and barriers are identified by case studies and policy analysis. The results of the empirical study identify several levels of firms' learning capabilities and activities such as a) stock of technology, b) potential of technical labor, c) explicit technological efforts, d) readiness to learn, e) top management support, f) a formal technological learning system, g) high learning motivation, h) appropriate technology choice, and i) specific goal setting. These learning capabilities determine firms' learning performance, especially in the early stages of development. Furthermore, it is found that the critical factors for successful technological learning vary along the stages of technology development. Throughout the statistical and policy analyses, this study confirms that technological learning can be understood as an intrinsic principle of the technology development process. Firms perform proactive and creative learning in the late stages, while reactive and imitative learning prevails in the early stages. In addition, this study identifies the driving forces or facilitating factors enhancing innovation performance in the post catch-up era. The results of the preliminary case studies and policy analysis show some facilitating factors such as a) the strategic intent of the CEO and corporate culture, b) leadership and change agents, c) design principles and routines, d) ecosystem and collaboration with partners, and e) intensive R&D investment.

  • PDF

Opportunity Tree Framework Design For Optimization of Software Development Project Performance (소프트웨어 개발 프로젝트 성능의 최적화를 위한 Opportunity Tree 모델 설계)

  • Song Ki-Won;Lee Kyung-Whan
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.417-428
    • /
    • 2005
  • Today, IT organizations perform projects with vision related to marketing and financial profit. The objective of realizing the vision is to improve the project performing ability in terms of QCD. Organizations have made a lot of efforts to achieve this objective through process improvement. Large companies such as IBM, Ford, and GE have made over $80\%$ of success through business process re-engineering using information technology instead of business improvement effect by computers. It is important to collect, analyze and manage the data on performed projects to achieve the objective, but quantitative measurement is difficult as software is invisible and the effect and efficiency caused by process change are not visibly identified. Therefore, it is not easy to extract the strategy of improvement. This paper measures and analyzes the project performance, focusing on organizations' external effectiveness and internal efficiency (Qualify, Delivery, Cycle time, and Waste). Based on the measured project performance scores, an OT (Opportunity Tree) model was designed for optimizing the project performance. The process of design is as follows. First, meta data are derived from projects and analyzed by quantitative GQM(Goal-Question-Metric) questionnaire. Then, the project performance model is designed with the data obtained from the quantitative GQM questionnaire and organization's performance score for each area is calculated. The value is revised by integrating the measured scores by area vision weights from all stakeholders (CEO, middle-class managers, developer, investor, and custom). Through this, routes for improvement are presented and an optimized improvement method is suggested. Existing methods to improve software process have been highly effective in division of processes' but somewhat unsatisfactory in structural function to develop and systemically manage strategies by applying the processes to Projects. The proposed OT model provides a solution to this problem. The OT model is useful to provide an optimal improvement method in line with organization's goals and can reduce risks which may occur in the course of improving process if it is applied with proposed methods. In addition, satisfaction about the improvement strategy can be improved by obtaining input about vision weight from all stakeholders through the qualitative questionnaire and by reflecting it to the calculation. The OT is also useful to optimize the expansion of market and financial performance by controlling the ability of Quality, Delivery, Cycle time, and Waste.

A Study on the construction of physical security system by using security design (보안디자인을 활용한 시설보안시스템 구축 방안)

  • Choi, Sun-Tae
    • Korean Security Journal
    • /
    • no.27
    • /
    • pp.129-159
    • /
    • 2011
  • Physical security has always been an extremely important facet within the security arena. A comprehensive security plan consists of three components of physical security, personal security and information security. These elements are interrelated and may exist in varying degrees defending on the type of enterprise or facility being protected. The physical security component of a comprehensive security program is usually composed of policies and procedures, personal, barriers, equipment and records. Human beings kept restless struggle to preserve their and tribal lives. However, humans in prehistoric ages did not learn how to build strong house and how to fortify their residence, so they relied on their protection to the nature and use caves as protection and refuge in cold days. Through the history of man, human has been establishing various protection methods to protect himself and his tribe's life and assets. Physical security methods are set in the base of these security methods. Those caves that primitive men resided was rounded with rock wall except entrance, so safety was guaranteed especially by protection for tribes in all directions. The Great Wall of China that is considered as the longest building in the history was built over one hundred years from about B.C. 400 to prevent the invasion of northern tribes, but this wall enhanced its protection function to small invasions only, and Mongolian army captured the most part of China across this wall by about 1200 A.D. European lords in the Middle Ages built a moat by digging around of castle or reinforced around of the castle by making bascule bridge, and provided these protections to the resident and received agricultural products cultivated. Edwin Holmes of USA in 20 centuries started to provide innovative electric alarm service to the development of the security industry in USA. This is the first of today's electrical security system, and with developments, the security system that combined various electrical security system to the relevant facilities takes charging most parts of today's security market. Like above, humankind established various protection methods to keep life in the beginning and its development continues. Today, modern people installed CCTV to the most facilities all over the country to cope with various social pathological phenomenon and to protect life and assets, so daily life of people are protected and observed. Most of these physical security systems are installed to guarantee our safety but we pay all expenses for these also. Therefore, establishing effective physical security system is very important and urgent problem. On this study, it is suggested methods of establishing effective physical security system by using system integration on the principle of security design about effective security system's effective establishing method of physical security system that is increasing rapidly by needs of modern society.

  • PDF

Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques (EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용)

  • Hyunsang Lee;Wonseok Lee;Bogeun Jo;Heejun Lee;Sangjin Oh;Sangwoo You;Maru Nam;Hyunsik Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.471-480
    • /
    • 2023
  • The Korean construction order volume in South Korea grew significantly from 91.3 trillion won in public orders in 2013 to a total of 212 trillion won in 2021, particularly in the private sector. As the size of the domestic and overseas markets grew, the scale and complexity of EPC (Engineering, Procurement, Construction) projects increased, and risk management of project management and ITB (Invitation to Bid) documents became a critical issue. The time granted to actual construction companies in the bidding process following the EPC project award is not only limited, but also extremely challenging to review all the risk terms in the ITB document due to manpower and cost issues. Previous research attempted to categorize the risk terms in EPC contract documents and detect them based on AI, but there were limitations to practical use due to problems related to data, such as the limit of labeled data utilization and class imbalance. Therefore, this study aims to develop an AI model that can categorize the contract terms based on the FIDIC Yellow 2017(Federation Internationale Des Ingenieurs-Conseils Contract terms) standard in detail, rather than defining and classifying risk terms like previous research. A multi-text classification function is necessary because the contract terms that need to be reviewed in detail may vary depending on the scale and type of the project. To enhance the performance of the multi-text classification model, we developed the ELECTRA PLM (Pre-trained Language Model) capable of efficiently learning the context of text data from the pre-training stage, and conducted a four-step experiment to validate the performance of the model. As a result, the ensemble version of the self-developed ITB-ELECTRA model and Legal-BERT achieved the best performance with a weighted average F1-Score of 76% in the classification of 57 contract terms.