• Title/Summary/Keyword: 리뷰 논문

Search Result 476, Processing Time 0.03 seconds

Classification of Advertising Spam Reviews (제품 리뷰문에서의 광고성 문구 분류 연구)

  • Park, Insuk;Kang, Hanhoon;Yoo, Seong Joon
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.186-190
    • /
    • 2010
  • 본 논문은 쇼핑몰의 이용 후기 중 광고성 리뷰를 분류해 내는 방법을 제안한다. 여기서 광고성 리뷰는 주로 업체에서 작성하는 것으로 리뷰 안에 광고 내용이 포함되어 있다. 국외 연구 중에는 드물게 오피니언 스팸 문서의 분류 연구가 진행되고 있지만 한국어 상품평으로부터 광고성 리뷰를 분류하는 연구는 아직 이루어지지 않고 있다. 본 논문에서는 Naive Bayes Classifier를 활용하여 광고성 리뷰를 분류하였다. 이때 확률 계산을 위해 사용된 특징 단어는 POS-Tagging+Bigram, POS-Tagging+Unigram, Bigram을 사용하여 추출하였다. 실험 결과는 POS-Tagging+Bigram 방법을 이용하였을 때 광고성 리뷰의 F-Measure가 80.35%로 정확도 높았다.

  • PDF

Shopping Mall Review Generator usin KoGPT2 (KoGPT2를 이용한 쇼핑몰 리뷰 생성기)

  • Park, Gyu-Hyeon;Kwon, Hee-Yun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.31-33
    • /
    • 2022
  • 쇼핑몰 리뷰 생성기는 사용자로 하여금 사용자를 대신해서 리뷰를 생성할 수 있는 기술이고, 옷 상태, 배송 상태, 사이즈와 관련된 세 가지의 카테고리를 이용하여 부분마다 점수를 부여하여 점수에 맞는 리뷰를 생성할 수 있도록 하는 기술이다. 해당 리뷰 생성기는 점수마다 생성되는 리뷰가 달라지기 때문에 다양한 리뷰 생성을 원하는 웹, 앱 쇼핑몰 사이트에서 적용이 가능한 기술이다. 본 논문에서는 KoGPT2를 이용한 리뷰 생성과 카테고리와 점수에 따른 다르게 생성되는 리뷰의 방식을 제안한다. 그리고 두 방식을 결합한 리뷰 생성의 방식을 제안한다. 제안하는 방식들은 카테고리고리 마다 학습하는 모델을 다르게 적용하고 있다.

  • PDF

Performance Evaluation of Review Spam Detection for a Domestic Shopping Site Application (국내 쇼핑 사이트 적용을 위한 리뷰 스팸 탐지 방법의 성능 평가)

  • Park, Jihyun;Kim, Chong-kwon
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.339-343
    • /
    • 2017
  • As the number of customers who write fake reviews is increasing, online shopping sites have difficulty in providing reliable reviews. Fake reviews are called review spam, and they are written to promote or defame the product. They directly affect sales volume of the product; therefore, it is important to detect review spam. Review spam detection methods suggested in prior researches were only based on an international site even though review spam is a widespread problem in domestic shopping sites. In this paper, we have presented new review features of the domestic shopping site NAVER, and we have applied the formerly introduced method to this site for performing an evaluation.

A study of Open Peer Review as new Peer Review (새로운 피어리뷰(Peer Review)로써의 오픈피어리뷰(Open Peer Review)에 대한 고찰)

  • Kim, Ha-na;Lee, Ji-Hyun
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2014.08a
    • /
    • pp.73-78
    • /
    • 2014
  • 피어리뷰(Peer Review)는 17세기 학술지가 만들어진 이래 오늘날까지 가장 널리 사용되는 논문의 질적인 수준과 학술지 게재 여부를 판단하는 전통적인 평가도구이다. 그러나 피어리뷰의 과정에서 발생되는 공정성 저해와 학술출판 분야에서 오픈 액세스 (OA, Open Access) 저널이 계속적으로 증가하는 디지털 미디어 시대에서 소수의 전문가가 검증하는 피어리뷰 시스템에 관한 불만들이 제기되면서 현 피어리뷰 시스템의 새로운 대안으로 오픈 피어리뷰(Open Peer Review)가 제시되기도 하였다. 이에 본 연구에서는 피어리뷰의 이론적 배경을 살펴보고 이를 토대로 새로운 대안으로 떠오르고 있는 오픈피어리뷰의 평가도구로써의 활용가능성에 대하여 살펴보고자 한다.

  • PDF

Author Identification Using Artificial Neural Network (Artificial Neural Network를 이용한 논문 저자 식별)

  • Jung, Jisoo;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1191-1199
    • /
    • 2016
  • To ensure the fairness, journal reviewers use blind-review system which hides the author information of the journal. Even though the author information is blinded, we could identify the author by looking at the field of the journal or containing words and phrases in the text. In this paper, we collected 315 journals of 20 authors and extracted text data. Bag-of-words were generated after preprocessing and used as an input of artificial neural network. The experiment shows the possibility of circumventing the blind review through identifying the author of the journal. By the experiment, we demonstrate the limitation of the current blind-review system and emphasize the necessity of robust blind-review system.

Detection of Adverse Drug Reactions Using Drug Reviews with BERT+ Algorithm (BERT+ 알고리즘 기반 약물 리뷰를 활용한 약물 이상 반응 탐지)

  • Heo, Eun Yeong;Jeong, Hyeon-jeong;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.465-472
    • /
    • 2021
  • In this paper, we present an approach for detection of adverse drug reactions from drug reviews to compensate limitations of the spontaneous adverse drug reactions reporting system. Considering negative reviews usually contain adverse drug reactions, sentiment analysis on drug reviews was performed and extracted negative reviews. After then, MedDRA dictionary and named entity recognition were applied to the negative reviews to detect adverse drug reactions. For the experiment, drug reviews of Celecoxib, Naproxen, and Ibuprofen from 5 drug review sites, and analyzed. Our results showed that detection of adverse drug reactions is able to compensate to limitation of under-reporting in the spontaneous adverse drugs reactions reporting system.

Survey on Fake Review Detection of E-commerce Sites (전자 상거래 사이트의 가짜 리뷰 판별 기법 조사)

  • Ji, Chengzhang;Zhang, Jinhong;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.79-81
    • /
    • 2014
  • People increasingly rely on sources of information from E-commerce reviews. Product reviews is an important determinant of potential customers' buying choices. They are also utilized by product manufacturers to find problems of their products and to collect competitive intelligence information about their competitors. Unfortunately, it is well-known that many online product reviews are not made by genuine costumers of products. Reviewers could write some undeserving positive reviews to promote or fake negative reviews to defame some certain product, and we call them fake product reviews. Fake product review detection makes an attempt to detect fake reviews and removes them to restore the truthful ones for readers. To the best of our knowledge, there is still less published study on this problem. In this paper, we make a survey and an attempt to give a brief overview on fake product review detection. The related work of fake product review detection is presented including web spam and spam email. Then some methods to detect fake reviews are introduced and summarized. The trend of fake product review detection is concluded finally.

  • PDF

Automatic Construction of Restaurant Menu Dictionary (음식메뉴 개체명 인식을 위한 음식메뉴 사전 자동 구축)

  • Gu, Yeong-Hyeon;Yoo, Seong-Joon
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.102-106
    • /
    • 2013
  • 레스토랑 리뷰 분석을 위해서는 음식메뉴 개체명 인식이 매우 중요하다. 그러나 현재의 개체명 사전을 이용하여 리뷰 분석을 할 경우 구체적이고 복잡한 음식메뉴명을 표현하는데 충분하지 않으며 지속적인 업데이트가 힘들어 새로운 트렌드의 음식 메뉴명 등이 반영되지 않는 문제가 있다. 본 논문에서는 레스토랑 전문 사이트와 레시피 제공 사이트에서 각 레스토랑의 메뉴 정보와 음식명 등을 래퍼기반 웹 크롤러로 수집하였다. 그런 다음 빈도수가 낮은 음식메뉴와 레스토랑 온라인 리뷰에서 쓰이지 않는 음식메뉴를 제거하여 레스토랑 음식 메뉴 사전을 자동으로 구축하였다. 그리고 레스토랑 온라인 리뷰 문서를 이용해 음식 메뉴 사전의 엔티티들이 어느 유형의 레스토랑 리뷰에서 발견되는지를 찾아 빈도수를 구하고 분류 정보에 따른 비율을 사전에 추가하였다. 이 정보를 이용해 여러 분류 유형에 해당되는 음식메뉴를 구분할 수 있다. 실험 결과 한국관광공사 외국어 용례사전의 음식 메뉴명은 1,104개의 메뉴가 실제 레스토랑 리뷰에서 쓰인데 비해 본 논문에서 구축한 사전은 1,602개의 메뉴가 실제 레스토랑 리뷰에서 쓰여 498개의 어휘가 더 구성되어 있는 것을 확인 할 수 있었다. 이와 아울러, 자동으로 수집한 메뉴의 정확도와 재현율을 분석한다. 실험 결과 정확률은 96.2였고 재현율은 78.4, F-Score는 86.4였다.

  • PDF

A Sentiment Classification Method Using Context Information in Product Review Summarization (상품 리뷰 요약에서의 문맥 정보를 이용한 의견 분류 방법)

  • Yang, Jung-Yeon;Myung, Jae-Seok;Lee, Sang-Goo
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.254-262
    • /
    • 2009
  • As the trend of e-business activities develop, customers come into contact with products through on-line shopping sites and lots of customers refer product reviews before the purchasing on-line. However, as the volume of product reviews grow, it takes a great deal of time and effort for customers to read and evaluate voluminous product reviews. Lately, attention is being paid to Opinion Mining(OM) as one of the effective solutions to this problem. In this paper, we propose an efficient method for opinion sentiment classification of product reviews using product specific context information of words occurred in the reviews. We define the context information of words and propose the application of context for sentiment classification and we show the performance of our method through the experiments. Additionally, in case of word corpus construction, we propose the method to construct word corpus automatically using the review texts and review scores in order to prevent traditional manual process. In consequence, we can easily get exact sentiment polarities of opinion words in product reviews.

Designing an automated system to grasp the reliability of online educators through review analysis (리뷰분석을 통한 온라인교육자 신뢰도 파악 자동화 시스템 설계)

  • Lee, Ki-Hoon;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.596-598
    • /
    • 2018
  • 본 논문은 온라인 교육매칭 플랫폼의 교육자에 대한 신뢰도 파악을 위한 리뷰분석 자동화 시스템을 설계한 논문이다. 웹 크롤링을 통해 비정형 데이터인 교육자에 대한 리뷰를 수집 및 파싱을 통해 데이터 베이스화 한다. 수집한 리뷰 데이터와 SO-PMI를 이용해 온라인 교육자 신뢰도 파악을 위한 맞춤형 감성사전을 구축하고자 한다. 구축한 감성사전을 이용해 리뷰를 수치화해 교육자와 피교육자 매칭 시신뢰성 향상에 도움을 주고자 한다.