• Title/Summary/Keyword: 리더펄스 사이의 시간간격

Search Result 2, Processing Time 0.015 seconds

Analysis of Predischarge Processes of $SF_6$ Gas Stressed by lmpulse Voltages under Nonuniform Electric Field (불평등전계중에서 임펄스전압에 대한 $SF_6$ 기체의 전구방전과정의 분석)

  • 이복희;이경옥;이창준;백승권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.85-93
    • /
    • 2000
  • In this paper, the predischarge propagation processes of SF\ulcorner gas stressed by impulse voltages under nonuniform electric field perturbed by a needle protrusion are described. The statistical and formative time-lags and the time interval between leader pulses were investigated on the basis of the predischarge current measured in the gas pressure range of 0.1~0.5 MPa. The predischarge current is closely related to the waveform, amplitude and polarity of applied votages, the gas pressure and the gap geometry. Both the positive and negative predischarge processes in nonuniform electric field develop in a regime of stepwise leader propagation leading to electrical breakdown. The mean of the time interval between leader pulses gives about a factor of 10 higher for the negative than for the positive leader current puls-es. According as the gas pressure increases, the statistical time-lag was almost unchangeable, but the formative time-lag was gradually decreased.

  • PDF

Characteristics of lightning Impulse Corona Discharges in SF6/CO2 Mixtures (SF6/CO2혼합기체 중에서 뇌임펄스코로나방전의 특성)

  • Lee, Bok-Hee;Baek, Young-Hwan;Oh, Sung-Kyun;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.85-90
    • /
    • 2006
  • This paper presents experimental results relating to the preliminary breakdown characteristics in $SF_6/CO_2$ gas mixtures under a highly non-uniform electric field. The impulse pre-breakdown developments are investigated by the measurements of corona current and light emission images. As a result, the preliminary breakdown development mechanisms for both the positive and negative polarities were fundamentally same. The first streamer corona was initiated at the tip of needle electrode, and the leaders developed with a stepwise propagation and bridged the test gap. The pause time of leader pulses in the positive polarity was significantly shorter than that in the negative polarity. Also, the time interval between the first streamer corona onset and breakdown in the negative polarity was much longer than that in the positive polarity. The discharge channel path in the positive polarity was zigzag, and the leader channel in the negative polarity was thicker and brighter than that in the positive polarity.