• Title, Summary, Keyword: 룸유닛

Search Result 8, Processing Time 0.041 seconds

Development of shipboard large-sized low-noise room unit with multiple outlets (다수의 출구를 가진 선박용 대형 저소음 룸유닛 개발)

  • Kim, Sang-Ryul;Kim, Hyun-Sil;Lee, Sung-Hyun;Park, Geun-Hyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.600-605
    • /
    • 2012
  • In this paper, the acoustic performance of a shipboard large-sized room unit is studied. The room unit is a kind of rectangular absorptive chamber with a partition whose surface absorptive material with fabric skin is attached to. The room unit has one inlet and three outlet. At the inlet, a plane damper is installed to control the flow rate. The acoustic performance of a prototype room unit is measured using a HVAC mock-up. It is shown that its insertion loss is comparable with that of a commercially-used room unit but the developed room unit generates flow noise higher than the other one. The major source of flow noise is analyzed by NADS-R, the noise analysis program for room unit. Cone-shaped dampers are proposed to be used as the damper of a room unit to reduce flow noise. It is shown that the cone-shaped damper decrease flow noise remarkably.

  • PDF

Development of Shipboard Large-sized Low-noise Room Unit with Multiple Outlets (다수의 출구를 가진 선박용 대형 저소음 룸유닛 개발)

  • Kim, Sang-Ryul;Kim, Hyun-Sil;Lee, Sung-Hyun;Park, Keun-Hyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.468-473
    • /
    • 2012
  • In this paper, the acoustic performance of a shipboard large-sized room unit is studied. The room unit is a kind of rectangular absorptive chamber with a partition whose surface absorptive material with fabric skin is attached to. The room unit has one inlet and three outlets. At the inlet, a plane damper is installed to control the flow rate. The acoustic performance of a prototype room unit is measured using a HVAC mock-up. It is shown that its insertion loss is comparable with that of a commercially-used room unit but the developed room unit generates flow noise higher than the other one. The major source of flow noise is analyzed by NADS-R, the noise analysis program for room unit. Cone-shaped dampers are proposed to be used as the damper of a room unit to reduce flow noise. It is shown that the cone-shaped damper decrease flow noise remarkably.

A Study on the 3-D Airflow and Dynamic Cross Contamination in the Photolithography Process Cleanroom (광식각공정이 있는 클린룸에서의 3차원 기류 및 동적교차오염에 관한 연구)

  • Noh, Kwang-Chul;Oh, Myung-Do;Lee, Seung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.560-568
    • /
    • 2004
  • We performed the numerical study on the characteristics of the 3-D airflow and dynamic cross contamination in the photolithography process cleanroom. The nonunifurmity, the deflection angle and the global cross contamination were used for analyzing the characteristics and performances of cleanroom. From the numerical results, we knew that the airflow characteristics of the cleanrooms are largely affected by the porosity of panel and the adjustment of dampers and the global cross contamination varies with the location of source and the passage of time through the concentration ratio.

A Numerical Analysis on the Airflow Characteristics in Super Cleanrooms with Different Design Types (초청정 클린룸 공조방식에 따른 기류특성에 관한 수치해석)

  • 노광철;이승철;오명도
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.751-761
    • /
    • 2003
  • We performed the numerical analysis on the airflow characteristics in the two type of cleanroom systems, which are the axial fan type (AFT) and the fan filter unit (FFU). A computational fluid dynamic model was applied to investigate and compare the nonuniformity, the deflection angle and the air ventilation effectiveness of the two designs of cleanrooms when dampers are adjusted and not adjusted. And the flow-resistance models of the various components were used in this simulation. We know that the airflow characteristics of the cleanrooms are largely affected by damper adjusting And we also find out that the FFU system is superior to the AFT system through the comparison of the cleanroom performance indices.

A Numerical Study on the Characteristics of Airflow and Cross Contamination in the Photolithography Process Cleanroom (광식각공정 클린룸에서의 기류 및 교차오염에 대한 수치적 연구)

  • Noh, Kwang-Chul;Lee, Seung-Chul;Oh, Myung-Do
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.151-156
    • /
    • 2003
  • We performed the numerical study on the characteristics of the airflow and cross contamination in the photolithography process cleanroom. The nonuniformity, the deflection angle and the global cross contamination were used for analyzing the characteristics and performances of cleanroom. We knew that the airflow characteristics of the cleanrooms are largely affected by the porosity of panel and the adjustment of dampers. And the numerical result showed that the global cross contamination varies with the location of source and the passage of time.

  • PDF

A Study on the Improvement of Airflow Deflection in a Cleanroom of Class 1000 (Class 1000 클린룸에서 편류 개선에 관한 연구)

  • Noh, Kwang-Chul;Lee, Seung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.225-233
    • /
    • 2010
  • We performed 3 dimensional numerical study on the improvement of the airflow deflection in the cleanroom of Class 1000, which is presently operated for the manufacturing process in Korea. The Deflection angle and the non-uniformity were investigated to analyze the airflow characteristics and the performance of cleanroom with variations of the cleanroom occupancy state, the filters' arrangement, and the floor return air system. From the numerical results, we found out that the airflow pattern of the cleanroom is more unidirectional and stable in the condition of at-rest than in the condition of as~built. It is due to that the equipments installed in the cleanroom play a role like partitions, which prevent the airflow from inclining toward the recirculation air duct. And it is needed to arrange the filter units parallel to the equipments array without a gap between them for maintaining the unidirectional airflow pattern. Finally, we knew that it is very important to install the partition like the eyelid above the equipment to keep the unidirectional airflow around the equipments and remove the contaminants quickly.

Flow Analysis around the Roller Conveyor in a Clean Room (클린룸 내 롤러 컨베이어 운송장치 주위의 유동해석)

  • Jeon, Hyun-Joo;Park, Chan-Woo;Im, Ik-Tae
    • Proceedings of the SAREK Conference
    • /
    • /
    • pp.1507-1512
    • /
    • 2009
  • Flow field in a roller conveyor system, induced from the movement of a cassette in which glasses for flat panel display are loaded, is numerically studied in this paper. Contamination on the glass surface by dust particles produced from mechanical friction between roller and cassette is predicted from the analysis results of flow fields. Results show that a large swirl flow is formed under the moving cassette with constant speed. This swirl flow is confined only under the cassette because two main streams from the backward and the fan filter unit on the top ceiling are sufficiently strong. Therefore, it can be said that possibility of the contamination by the particles originated from the friction is relatively low. It is also revealed that flow direction between glass plates is changed according to the speed of the cassette movement due to the shear force of glass plates.

  • PDF

Characteristics of Contaminant Transfer in a Clean Space for the Location of Product and Fan Filter Unit (청정공간에서 제품과 팬필터유닛의 위치에 따른 오염물질의 전파 특성)

  • Kim, Hyouk-Soon;Noh, Kwang-Chul;Lee, Young-Koo;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • /
    • pp.452-457
    • /
    • 2008
  • We performed a study on the contaminant transfer in a clean space for the location of product and fan filter unit using computational fluid dynamics analysis. To simplify the real product moving process, three different non-moving cases regrading the locations of product were selected: no product, at the lower side, and at the upper and lower sides. And to investigate the characteristics of the contaminant transfer, the arrangement of fan filter units was varied. Local mean air-age and contaminant distribution were used as evaluation indices. From the results, the contaminant transfer to the product was the most when the products were simultaneously located at the upper and lower sides. And the contaminant was easily exhausted regardless of the location of product when the fan filter units were properly arranged at the top side of the clean space.

  • PDF