• Title/Summary/Keyword: 루프 히트파이프

Search Result 35, Processing Time 0.028 seconds

Thermal Performance of the Bubble Jet Loop Heat Pipe Using Eccentric Heater in Evaporating Section (증발부에 편심 가열부를 사용한 버블젯 루프 히트파이프의 열성능)

  • Kim, Jong-Soo;Kim, Sung-Bok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.652-658
    • /
    • 2015
  • The Bubble Jet Loop Heat Pipe (BJLHP) is designed to operate in the horizontal orientation. The motion of the bubble generated by boiling working fluid on a heater surface in the evaporating section of the BJLHP helps the working fluid transfer heat to the condensing portion. In this study, we changed the position of the heater in the evaporating section from concentric to eccentric. The concentric heater is located at the center of the tube in the evaporating part, and the eccentric heater is located at the bottom of the inner surface of the same tube. We used R-134a as the working fluid, and the charging ratio was 50%vol. We measured the temperatures of the evaporating and condensing sections by changing the input electric power from 50 W to 200 W, measuring every 50 W. The results of the experiment show that the effective thermal conductivity of BJLHP using an eccentric heater is four times higher than the BJLHP obtained using a concentric heater. Additionally, we conducted a visualization experiment on the evaporating portion of BJLHP to determine why the effective thermal conductivity was higher. The working fluid was water, and we took pictures of the flow visualization for BJLHP. Nucleate boiling with the eccentric heater was more intense and generated more bubbles. Therefore, the eccentric heater was more saturated by the liquefied working fluid.

Development of mLHP by using Various Size of Wick (다양한 크기의 윅(wick)을 이용한 mLHP의 개발)

  • Ha, Jeong-Seok;Choi, Young-Don;Ahn, Deuk-Kuen
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.175-180
    • /
    • 2008
  • This paper is dedicated to the development of cooling devices such as mLHP with Fan-Fin system limited by noise and vibration. As we know, Heat pipe has the limitation of cooling capability to cool down the electronics. It is bounded by capillary and thermal limitation but heat load that it has to deal with is increasing. Especially Today's electronic technology has a tendency to integrate lots of function into the small piece of a processor like Dual core having 35W heat load for mobile and desktop computer respectively. There is an optimum operating condition of temperature, below $70^{\circ}C$, during the maximum heat load, 35W. There is the motivation needed to develop the new type of cooling devices and we can discuss about the new challenge beyond heat pipe.

  • PDF

Flow Characteristics in the Converging Mini-Channels (좁아지는 유로에서의 유동 특성)

  • Karng, Sarng-Woo;Kim, Jin-Ho;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1623-1628
    • /
    • 2004
  • Recently mini-channels or micro-channels are widely used for cooling the high density power electronic devices. Especially, the channels are used in small and high efficient equipments such as heat pipes and heat exchangers. Interfacial velocities between liquid and gas phases are very important in mini or micro-channels. In this paper, an experiment and a numerical analysis on the interfacial velocities were performed. In the experiment, the interfacial velocities which were measured by the high-speed CCD camera were about $26{\sim}33$ cm/s and the velocities increased as the inclination angle did. In the numerical experiment, CFD-ACE+, a commercial program, was used, the velocities had similar values with experimental results. As the inclination angle and the contact angle increased, the interfacial velocities did because of the surface tension which causes to move the interface. The effect of inclination angle was larger in the converging channels than in straight channels.

  • PDF

Study on a Operating Characteristics of Loop Heat Pipe Using a Brass Sintered Metal Wick-Water (황동소결윅-물 LHP의 작동 특성에 관한 연구)

  • Lee, Wook-Hyun;Lee, Ki-Woo;Park, Ki-Ho;Lee, Kye-Jung;Noh, Seung-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1528-1533
    • /
    • 2004
  • In this study, we have manufactured the LHP(Loop Heat Pipe) with sintered metal wick and investigated the working characteristics of LHP experimentally.Water was used as a working fluid and fill charge rate was changed. LHP basically consist of the separated vapor/liquid channels, evaporator having sintered metal wick(effective pore diameter :$16{\sim}19{\mu}m$), and condenser cooled by water. The diameter of vapor/liquid line tube are 3.2mm/6.35mm, respectively. Heat transfer rate and thermal resistance was represented to study the basic characteristics of LHP at each conditions

  • PDF

A Theoretical Analysis on the Factors Affecting the Operation of Loop Heat Pipe (루프 히트파이프의 작동에 영향을 미치는 인자에 대한 이론적 분석)

  • Lee Ki-Woo;Chun Won-Pyo;Lee Wook-Hyun;Park Ki-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1107-1116
    • /
    • 2004
  • In this paper, the effects of diverse parameters on the operation of loop heat pipe (LHP), such as particle diameter of sintered porous wick, wick porosity, vapor line diameter, thickness of wick and heating capacity were investigated by a theoretical analysis. A LHP has a wick only in its evaporator for the circulation of working fluid, and utilizes a porous wick structure of which pore size is very small to obtain a large capillary force. The working fluid is water and the material of sintered porous wick is copper. For these different parameters, capillary pressure, pressure drop in wick, pressure drops and temperature distribution were analyzed by a theoretical design method of LHP.

Design Method for Cast-in-place Energy Pile Considering Equivalent Heat Exchange Rate (등가열교환율을 적용한 현장타설 에너지파일 설계법)

  • Min, Sunhong;Park, Sangwoo;Jung, Kyoungsik;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1049-1061
    • /
    • 2013
  • In this paper, a relative heat exchange rate is numerically compared for cast-in-place concrete energy piles with different heat exchange pipe configurations, and a new design method for energy piles is proposed. An equivalent heat exchange rate was estimated for the W-type (one series loop), multiple U-type (four parallel loops), and coil-type heat exchanger installed in the same large-diameter drilled shaft. In order to simulate a cooling operation in summer by a CFD analysis, the LWT (leaving water temperature) into a energy pile was fixed at $35^{\circ}C$ and then the EWT (entering water temperature) into a heat pump was monitored. In case of continuously applying the artificial maximum cooling load for 100 hours, all of the three types of heat exchangers show the marginally similar heat exchange rate. However, in case of intermittently applying the cooling load with a cycle of 8 hours operation-16 hours off for 7 consecutive days, the coil type heat exchanger exhibits a heat exchange rate only 86 % of the multiple U-type due to measurable thermal interference between pipe loops in the energy pile. On the other hand, the W-type possesses the similar heat exchange rate to the multiple U-type. The equivalent heat exchange rates for each configuration of heat exchangers obtained from the CFD analysis were adopted for implementing the commercial design program (PILESIM2). Finally, a design method for cast-in-place concrete energy piles is proposed along with a design chart in consideration of typical design factors.

A Study on the Reduction the Thermal Contact Resistances at the Interface Between a Porous Metal Wick and Solid Heating Plate for a Circular Plate LHP (원판형 LHP 증발부의 소결 금속 윅에서의 접촉 저항에 관한 연구)

  • Jo, Jung-Rae;Choi, Jee-Hoon;Sung, Byung-Ho;Ki, Jae-Hyung;Ryoo, Seong-Ryoul;Kim, Chul-Ju
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2357-2362
    • /
    • 2008
  • LHP is different from a conventional heat pipes in design and heat and fluid flow passages. The situations of the former is much complex than the latter. In LHPs, evaporation occurs at the contact interface between the heating plate and the porous wick, so some micro channels machined at the contact interface serve to let the vapor flow out of the evaporator. This complexity of contact geometry was known to cause a high resistance to heat flow. The present work was to study the problem of heat passage across the contact surface for LHPs and determine those values contact resistance. For two cases of contact structures, the thermal contact resistances were examined experimentally, one being obtained through mechanical contact under pressure and the other through sintered bonding. Nickel powder wick and copper plate were used for specimens. The result showed that a substantial reduction of contact resistance of an order of degree could be obtainable by sintered bonding.

  • PDF

Performance Characteristics of a Loop Thermosyphon for Heat Source Cooling (열원 냉각용 루프 써모사이폰의 작동 특성)

  • Choi, Du-Sung;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1475-1483
    • /
    • 2004
  • Loop thermosyphon(LTS) has many good characteristics such as low thermal resistance, no power consumption, noiseless operation and small size. To investigate the overall performance of LTS, we have performed various experiments varying three parameters: input power of the heater, working fluid(water, ethanol, FC3283) and filling ratio of the working fluid. At a combination of these parameters, temperature measurements are made at many locations of the LTS. The temperature difference between the evaporator and the condenser is used to obtain the thermal resistance. In addition, flow visualization using a high speed camera is carried out. The thermal resistance is not constant. It is lower at higher input power, which is one of the distinct merits of LTS. Flow instabilities are frequently observed when changing the working fluid, the input power and the filling ratio. The results show that the LTS can be readily put into practical use. Future practical application in electronic cooling is recommended.

Development of High Performance Bubble Jet Loop Heat Pipe for Hot Water Floor Heating System (온수 가열 바닥 난방 시스템용 고성능 버블젯 루프 히트파이프 개발)

  • Kim, Jong-Soo;Kwon, Yong-Ha;Kim, Jeong-Woong
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.23-28
    • /
    • 2014
  • In order to increase the performance of conventional hot water floor heating system, the bubble jet loop heat pipe for the system was developed. This experiment was conducted under next conditions : Working fluid was R-134a, charging ratio was 50%. A temperature of hot water, room temperature and flow rate were $60^{\circ}C$, $15^{\circ}C$ and 0.5~1.5 kg/min, respectively. The experimental results, show that bubble jet loop heat pipe had a high effective thermal conductivity of $4714kW/m^{\circ}C$ and a sufficient heat flux of $73W/m^2$ to heat the floor to $35^{\circ}C$ in case of the 1.5 kg/min of flow rate. So the bubble jet loop heat pipe has a possibility for appling of the floor heating system. Additionally, the visualization of bubble jet loop heat pipe was performed to understand the operating principle. Bubbles made by the narrow gap between inner tube and outer tube of evaporating part generate pulsation at liquid surface of working fluid. The pulsation had slug flow and wavy flow. So working fluid circulates in the bubble jet loop heat pipe as two phase flow pattern. And large amount of heat is transferred by the latent heat from evaporating part to condensing part.