• Title/Summary/Keyword: 루트갭

Search Result 16, Processing Time 0.022 seconds

Fatigue Assessment of High Strength Steel with Butt Welded Joints for the Root Gap Difference (고강도강 맞대기 용접 시험편의 루트갭 변경에 따른 피로강도 평가)

  • Kim, Ho-Jung;Kang, Sung-Won;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • In this study, a series of fatigue tests was conducted to evaluate fatigue strength for the root gap difference with high strength steel with butt welded joints. A finite element analysis using effective notch stress method was also performed to compare effective notch factors each other with butt welded specimens made by copper backing. The results of fatigue tests were classified according to the root gap difference. Fatigue life of butt welded specimens is presented for determining the root gap of high strength steel with butt welded joints in terms of fatigue strength. Then effective notch stress was applied to interpret fatigue strength of butt welded specimen model which is reflected actual measured dimensions. As a result, fatigue strength of high strength steel with butt welded specimens is increased by root gap gets longer in length.

Implementation of CAM Program for 6-Axis CNC Pipe Coaster (6축 CNC 파이프 코스터 전용 CAM 프로그램 구현)

  • Lho, Tae-Jung;Lee, Wook-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2202-2209
    • /
    • 2009
  • Joint paths are induced mathematically for many kinds of joint pattern between master- and sub-pipes. By compensating them with root gap of welds and kerf width, real cutting paths are determined. Their NC codes are generated, and the paths generated by NC code are verified by a ghost function. A beveling is implemented through tilting a torch in the A- and B-axis direction for 8 sections in the chuck rotation of C-axis. The effective CAM program was developed specially for 6-axis CNC pipe coasters which cut a master or sub- pipe along the cutting path and simultaneously fulfill a beveling process.

A Study on Plasma Arc Weldability by Root Gap and Misalignment (루트 갭과 단차에 의한 플라즈마 아크 용접성에 관한 연구)

  • Kim, Dae-Ju;Kim, Gyeong-Ju;Baek, Ho-Seong
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.138-140
    • /
    • 2005
  • Plasma arc welding(PAW) technology is a proven process that has already been adopted by other industrial fields and recently has been considered to join the tank structure of LNG carrier. The purpose of this study is to introduce PAW process for the root welding of stainless steel pipes instead of TIG welding. There are distinctive features of the PAW compared to TIG welding; higher energy density that can increase welding speed by more than twofold, and longer arc length that can be controlled to trace seam line easily because of allowable gap between workpiece and torch. However, PAW process is also very sensitive to the root gap and misalignment due to the characteristics of long and narrow arc shape. So, we have done various experiments to establish the allowable fit-up condition by changing welding parameters including arc length, with or without filler metal, groove shape, and obtained satisfactory result.

  • PDF

Development of Non-Scallop Block Joint Welding Method (논-스캘럽 블록 조인트 용접법 개발)

  • Kim, Ho-Kyeong;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5419-5424
    • /
    • 2014
  • A weld scallop is a small quadrant or half circle type hole installed in the weld line cross area for easy welding operation. Many types of T-bars with a scallop can be welded in a block assembly stage in shipbuilding. The difficulties arise from the fact that scallops are to be filled by build-up welding after welding of the cross line is complete. In this study, a non-scallop block joint welding method was developed using special type CBM (ceramic backing material). The wedge shaped CBM was devised to insert a CBM into just the V groove of weld line cross area without weld scallop. A saw-toothed shape was adopted for easy cutting of the unnecessary part in the CBM fitting process. The applicability of the developed method was verified through welding experiments based on the yard welding conditions.

Method to Overcome Gap Variation by Control of Arc Force in Root Pass Welding for Back Bead by GMAW (GMAW 루트패스 이면비드 용접에서 아크력제어에 의한 갭변동 극복 방법)

  • Son, Chang-Hee;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.77-81
    • /
    • 2011
  • In most industry, manual GTAW welding is preferred for formation of stable back bead in root weld of butt joint. However, manual GTAW welding has low productivity as compared with GMAW, also it has unstable bead quality which depend on skilled workers. So it is necessary to develop process of root pass welding by using automation GMAW that have stable back bead formation and high productivity. In this paper, the design of U-groove with 3mm root face was applied to extend the tolerance of misalignment in condition of standard root gap 1.5mm. Consequently, for the formation of stable back bead in root pass of butt welding, in case of the narrow root gap(0.5mm) the large arc force was applied by increasing the current and voltage. In case of the large root gap(2.5mm), the small arc force was applied by decreasing the current and voltage. Considering the various root gap, the required deposited metal was controlled by welding speed only.

A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems (파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF