• Title/Summary/Keyword: 록볼트 인발시험

Search Result 15, Processing Time 0.018 seconds

Corrosion Prediction of a Cement Mortar-Grouted Rockbolt by Measuring Its Chloride Diffusion Coefficient (시멘트 모르타르계 록볼트 충전재의 염화물 확산계수 측정을 통한 록볼트 부식 예측)

  • Bae, Gyu-Jin;Chang, Soo-Ho;Kim, Dong-Gyou;Park, Hae-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.259-271
    • /
    • 2006
  • This paper aims to predict the corrosion of a fully cement-grouted rockbolt induced by chloride diffusion in a cement mortar grout. From the viewpoint of the long-term durability, a rockbolt may be deteriorated by chemical components, such as sulphate and chloride, in groundwater. Especially, the steel rod of a rockbolt is corroded mainly by chloride. The rockbolt corrosion results in the volume expansion of a rod and then the cracking of a cement grout. In this study, the chloride diffusion coefficient of a cement mortar grout was used to evaluate the possibility of rockbolt corrosion by chloride, and to predict the long-term durability of a rockbolt. The electric acceleration test method was adopted to measure the chloride diffusion coefficient. In addition, a simple pullout testing system was newly proposed to measure the pullout capacity of a rockbolt more easily in a laboratory condition. From the experiments, it was showed that the chloride could diffuse in the cement grout more easily than in ordinary concrete materials. As a result, it was considered that a rockbolt might be easily corroded in a short term by the diffusion of chemical components with high concentration, although it was fully grouted.

Estimation of Rockbolt Integrity by Using Non-Destructive Testing Techniques(I) -Numerical and Experimental of Applicability- (비파괴 시험기법을 이용한 록볼트의 건전도 평가(I) -수치해석 및 실험적 적용성 평가-)

  • Lee, Jong-Sub;Lee, Yong-Jun;Eom, Tae-Won;Han, Shin-In;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.3-12
    • /
    • 2006
  • The purpose of this study is to describe the Non-Destructive Testing(NDT) of the rockbolt and investigate the applicability of the NDT methods to estimate the integrity of the rockbolt. To examine the rockbolt integrity including rockbolt itself and grouting material, two methods are adopted: numerical and experimental methods. In the numerical method, the numerical code DISPERSE is used to analyze the dispersion of the rockbolt. The dispersion curve shows the effects of the thickness and stiffness of grouted materials on the embedded rockbolt. Therefore, the optimal frequency for the integrity test of the rockbolt is obtained: 20~120kHz in L(1,0) mode. In the experimental methods, destructive and non-destructive tests are carried out in a laboratory. In the non-destructive test, the low frequency mode generated by an impact and t he high frequency mode generated by an ultrasonic transducer seem to characterize the rockbolt condition readily. The experimental results show that the guided waves attenuate more significantly when the stiffness of the grouted material increases and/or the zone of the defect increases. Meanwhile, the ultimate capacity of rockbolt was evaluated through the pull-out tests and is compared to the NDT results. This study demonstrates that the NDT is a valuable tool for the rockbolt integrity evaluation.

  • PDF

Study on evaluation of bond strength of cone-shaped button cablebolt (콘형 케이블볼트의 인발강도 평가 연구)

  • Choi, Jung-In;Kim, Won-Keun;Lee, Dong-Seok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.61-73
    • /
    • 2010
  • The cablebolt which secures a workability and stability has been used in foreign countries as one of supporting materials with rebar rockbolt especially in construction of large underground structures. However, only the rebar rockbolt has been applied up to now to all the constructions of underground structures in Korea due to an absence of recognition of cablebolt and large underground structure projects. Consequently, the research for a performance evaluation and verification of cablebolt is very limited and only the proto-type field tests have been conducted. In this study, the cone-shaped button cablebolt is developed by modifying an existing button cablebolt. To evaluate a performance and applicability of cone-shaped button cablebolt, the laboratory pull tests are conducted and bond capacity is analyzed under a various conditions. The rebar rockbolt, plane cablebolt, and bulb cablebolt which has a similar mechanical behavior with cone-shaped button cablebolt, are also tested and their bond capacities are evaluated and compared with cone-shaped button cablebolt under the same condition. The results show that the bond capacity is in the order of (cone-shaped button cablebolt$\approx$bulb cablebolt) > rockbolt > plane cablebolt. It is found that the bond capacity of cone-shaped button cablebolt developed in this study is at least equivalent with an existing high performance cablebolt developed in foreign countries, therefore the cone-shaped button cablebolt could be used as one of supporting materials for underground structures in construction field.

A study on the development and field application of SP-Rockbolt with high-strength steel pipe (고강도 강관을 적용한 SP-록볼트 개발 및 현장 적용을 위한 연구)

  • Shin, Hyunkang;Jung, Hyuksang;Ahn, DongWook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.651-668
    • /
    • 2017
  • For initial stability of the tunnel, the primary support, Shotcrete and rockbolt shall be placed in the most appropriate time. This is because the role of such support plays a vital role in long-term and short-term tunnel stability. In this study, the rock bolt is an important supporting system that receives the external pressure generated by the stress relaxation during tunnel excavation as axial force and transmits it to the shotcrete on the tunnel excavation surface. Until now, most of the materials of rock bolts have been used in the field, but there have been many problems such as uncertain quality of Chinese materials entering the market, poor packing due to falling down of rock bolts when filled with mortar, and corrosion due to water. Therefore, in this study, we have developed a high strength steel pipe rock bolt using Autobeam material to solve and improve various problems of existing rock bolts. In order to evaluate the performance of the developed bolt, field tests were carried out and the existing mortar filler in order to improve the performance of the rock bolt, the design and construction criteria were studied and the results were included in this paper.

A Study on the Problem and Improvement Plan of Rock Bolt Pull Test for Railroad Tunnel Construction (철도 터널 공사용 록볼트 인발 시험의 문제점과 개선방안에 관한 연구)

  • Jang Seog-Jae;Gwak Su-Jeong;Kim Doo-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.89-94
    • /
    • 2006
  • We, presently, don't have clear diagram methods and analysis criteria in rock bolt pull test usable for tunnel reinforcement. So this paper has suggested that; first, 'scheme of apposite diagram method at hard rock and the different application method of rock bolt pull test at weathered and hard rock', and second, 'the pullout capacity specification criteria for design and construction of rock bolt', based on foreign criteria and field test.