• 제목/요약/키워드: 로터 베어링 시스템

검색결과 74건 처리시간 0.019초

상태공간 Newmark 기법을 이용한 로터-베어링 시스템의 충격응답 해석 (Shock Response Analysis of Rotor-Bearing System using the State-Space Newmark Method)

  • 이안성;김병옥;김영철;김영춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.242-247
    • /
    • 2004
  • In this study was proposed a transient response analysis technique of a rotor system, applying the generalized FE modeling method of a rotor-bearing system considering a base-transferred shock force and together the state-space Newmark method of direct time integration scheme based on the average velocity concept. Experiments were performed to a test rig of a mock-up rotor-bearing system with series of half-sine shock waves imposed by an electromagnetic shaker, and quantitative error analyses between analytical and experimental results were carried out. The transient reponses of the rotor were sensitive to duration times and shape-qualities of the shock waves, and overally the analytical results agreed quite well with the experimental ones. Particularly, in cases that the frequencies, $1/(2{\times}duration\;time)$, of the shock waves were close to the critical speed of the rotor-bearing system, resonances occurred and the transient responses of the rotor were amplified.

  • PDF

고속 운전용 건식진공펌프 로터-베어링 시스템의 회전체동역학 해석 (Rotordynamic Analysis of a Dry Vacuum Pump Rotor-Bearing System for High-Speed Operation)

  • 이안성;이동환;김병옥
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.523-530
    • /
    • 2006
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modern semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element hearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through the results of its 3-D finite element model. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated determinately and indeterminately by considering the generalized forces of the gear action as veil as the rotor itself. Each resultant hearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, and unbalance responses under various unbalance locations. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.

  • PDF

고속 운전용 건식진공펌프 로터-베어링 시스템의 전체동역학 해석 (A Rotordynamic Analysis of Dry Vacuum Pump Rotor-Bearing System for High-Speed Operation)

  • 김병옥;이안성;노명근
    • 한국유체기계학회 논문집
    • /
    • 제10권3호
    • /
    • pp.47-54
    • /
    • 2007
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modem semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element bearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through the results of its 3-D finite element model. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated determinately and indeterminately by considering the generalized forces of the gear action as well as the rotor itself. Each resultant bearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, and unbalance responses under various unbalance locations. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.

자기베어링으로 지지되는 수직형 강성 로터의 가상적 영 전류 제어 방식에 관한 연구 (A Study of Vertical Type Rigid Rotor Supported in Magnetic Bearings using Virtually Zero Power Control)

  • 이준호;이기서
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권7호
    • /
    • pp.393-400
    • /
    • 2003
  • In this paper we deal with the virtually zero power control for the rigid rotor with radial suspension by the permanent magnetic bearing and axial suspension by electromagnetic bearing. The purpose of the virtually zero power control is to reduce the power consumption of the electromagnetic bearings. The axial active force is expressed by the normal second order equation which has only one degree-of-freedom. The virtually zero power control structure has two schemes. One is the coil control current integrator which is used to make the convergence of the control current to a range which is very close to zero. By using the current integrator the DC component which is included in the control current is eliminated, thus the control current converges to a range which is close to zero. The other is normal PD control loop which is used to make the rotor reach to stable equilibrium point and to maintain air gap so that the axial force produced by radial permanent magnet always balances the total weight of the rotor and its load. First we show a simple mathematical plant model and the virtually zero power (VZP) control blocks. Second, we investigate the theoretical feasibility and the stability of the proposed virtually zero Power control levitation system with PD feedback loop by using linear control theory Finally we show the effectiveness of the proposed control method to reduce the power consumption by simulations.