• 제목/요약/키워드: 로지스틱 회귀

검색결과 1,771건 처리시간 0.029초

사학연금 퇴직률 산출 개선방안 연구

  • 백혜연
    • 사학연금연구
    • /
    • 제3권
    • /
    • pp.279-305
    • /
    • 2018
  • 공적연금제도는 장기적 유지 및 운영을 위해 기금의 재정건전성 및 지속가능성 진단을 목적으로 재정계산제도를 운영하고 있다. 정확한 재정계산은 매우 중요하며 이를 위한 선행작업으로 재정계산에 요구되는 기본 가정들을 보다 합리적으로 추정해야 할 필요가 있다. 본 연구는 로지스틱 회귀분석(logistic regression)을 이용하여 사학연금의 재정계산에 적용되는 다양한 기초율들 중 퇴직률을 산출하는 것에 그 목적이 있다. 사학연금은 현재 퇴직률을 교원 및 직원에 대하여 각 성별로 총 4개 집단을 구분하여 각 집단별 가입연령과 재직기간에 따라 산출하고 있다. 그러나 본 연구에서는 학교급 등 퇴직률 산출에 있어 보다 유의한 집단 구분이 있는지를 확인하고 보정의 어려움을 피할 수 있는 하나의 대안으로서 로지스틱 회귀분석을 이용하여 퇴직률을 산출해 보았다. 또한 우수한 모형을 판별하기 위해 통계적으로 우수한 모형보다는 실무적으로 사학연금 재정추계에 적합한 모형을 찾는 것을 목표로 하여 퇴직률을 추정한 값을 제시하였다.

데이터마이닝 기법을 활용한 한국인의 고위험 음주 예측모형 개발 연구 (Developing the high-risk drinking predictive model in Korea using the data mining technique)

  • 박일수;한준태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1337-1348
    • /
    • 2017
  • 본 연구는 질병관리본부에서 실시한 전국 규모의 자료인 지역사회건강조사 2014년 자료를 이용하여 고위험 음주자들의 특성 및 요인을 파악하고 고위험 음주 예측모형을 개발했다. 예측모형 개발은 데이터마이닝 방법 중 로지스틱 회귀분석, 의사결정나무, 신경망 분석 3가지 방법을 적용했으며, 로지스틱 회귀분석의 주요 결과로는 40대 남자의 위험도가 높았고, 사무직과 판매서비스직의 위험도가 높았다. 특히 현재 흡연자인 경우 고위험 음주 위험도가 높았다. 3가지 방법 중 AUROC (area under a receiver operation characteristic curve) 측면에서 신경망 분석과 로지스틱 회귀분석이 가장 높게 나타났다. 또한 고위험 음주 예방을 위한 우선 관리 대상자를 선정함에 있어 신경망 분석과 로지스틱 회귀분석으로 개발된 예측모형의 사후확률을 기초로 두 가지 모형 모두 예측분포의 상위 10%인 집단에 해당되는 경우를 선정한 결과 신경망 분석이나 로지스틱 회귀모형 1가지 모형으로 적용하는 것보다 반응률 및 향상도가 다소 개선되는 것으로 나타났다. 본 연구에서 개발된 고위험 음주 예측모형과 우선 관리 대상자 선정 방법은 문제적 음주 예방 및 개선 교육, 절주 프로그램 개발 등에 보다 세분화되고 효과적인 건강관리 서비스를 제공을 위한 기초자료가 될 수 있을 것이다.

한우 거세우 고기 관능평가 데이터의 로지스틱 회귀분석 (Logistic Regressions with Sensory Evaluation Data about Hanwoo Steer Beef)

  • 이혜정;김재희
    • 응용통계연구
    • /
    • 제23권5호
    • /
    • pp.857-870
    • /
    • 2010
  • 국립축산과학원에서는 2006년 부터 2008년 까지 전국 소비자들을 대상으로 한우 거세우 표본 시료에 대한 관능 평가 조사를 실시하여 데이터를 수집하였으며 본 연구에서는 한우 관능 평가 데이터에 대해 사회 인구학적 요인과 한국 소비자들의 맛 평가에 대한 연관성을 탐구하고자 한다. 소비자 거주지역, 연령, 성별, 직업, 월수입과 쇠고기 부위를 설명변수로 맛등급 평가를 반응변수로 이항 다중 로지스틱 모형과 다항 다중 로지스틱 모형을 적합하고 회귀계수별 유의성 검정과 적합도 검정을 실시한다. 단계별 변수 선택으로 최종 모형을 선택하고 반응변수 범주에 대한 오즈비를 계산하여 맛등급과 설명변수들 간의 관련성을 파악한다. 또한 맛과 관련 있는 연속형 변수를 설명변수로 포함한 경우에 대해서도 이항 다중 로지스틱 모형과 다항 다중 로지스틱 모형을 적합하고 비교한다. 그 결과 거주 지역, 연령, 월수입과 쇠고기 부위 변수들이 선택되었으며 영남지역에서 맛에 대한 오즈가 큰 편이며 수입이 많고 연령이 높을수록 맛에 대한 오즈가 작은 편이었다. 요리법으로는 탕에 대한 구이의 오즈비가 큰 편이며 쇠고기 부위별로는 우둔에 비해서 등심이 다른 부위들 보다 맛에 대한 차이가 크다고 볼 수 있다. 연속형 변수로는 연도가 맛등급에 큰 영향을 미치는 변수로 나타났다.

로버스트추정에 바탕을 둔 주성분로지스틱회귀 (Principal Components Logistic Regression based on Robust Estimation)

  • 김부용;강명욱;장혜원
    • 응용통계연구
    • /
    • 제22권3호
    • /
    • pp.531-539
    • /
    • 2009
  • 로지스틱회귀분석은 고객관계관리를 위한 데이터마이닝 분야에서 많이 사용되는 기법인데, 이 분야의 모형설정 과정에서는 연관성이 매우 높은 설명변수들이 모형에 함께 포함되어 다중공선성의 문제를 유발하며, 더욱이 회귀자료에 이상점들이 포함되면 최우추정량은 심각한 결함을 갖게 된다. 두 가지 문제점을 동시에 해결하기 위하여 로버스트주성분로지스틱회귀를 적용할 수 있는데, 본 논문에서는 주성분의 선정기준을 결정하는 모형을 개발하고, 주성분모형에서의 추정치에 미치는 이상점의 영향을 축소하기 위한 로버스트추정법을 제안하였다. 제안된 추정법은 다중공선성과 이상점이 유발하는 문제들을 적절히 해결해 준다는 사실이 모의실험을 통하여 확인되었다.

Support Vector Machines을 이용한 개인신용평가 : 중국 금융기관을 중심으로 (An Application of Support Vector Machines to Personal Credit Scoring: Focusing on Financial Institutions in China)

  • 딩쉬엔저;이영찬
    • 산업융합연구
    • /
    • 제16권4호
    • /
    • pp.33-46
    • /
    • 2018
  • 개인신용평가는 은행이 대출을 승인할 때 수익성 있는 의사결정을 적절히 유도할 수 있는 효과적인 도구이다. 최근 많은 분류 알고리즘 및 모델이 개인신용평가에 사용되고 있다. 개인신용평가 기법은 대체로 통계적 방법과 비 통계적 방법으로 구분된다. 통계적 방법에는 선형회귀분석, 판별분석, 로지스틱 회귀분석, 의사결정나무 등이 포함된다. 비 통계적 방법에는 선형계획법, 신경망, 유전자 알고리즘 및 Support Vector Machines 등이 포함된다. 그러나 신용평가모형 개발을 위해 어떠한 방법이 최선인지에 관해서는 일관된 결론을 내리기는 어렵다. 본 논문에서는 중국 금융기관의 개인 신용 데이터를 사용하여 가장 대표적인 신용평가 기법인 로지스틱 회귀분석, 신경망 그리고 Support Vector Machines의 성능을 비교하고자 한다. 구체적으로, 세 가지 모형을 각각 구축하여 고객을 분류하고 분석 결과를 비교하였다. 분석결과에 따르면, Support Vector Machines이 로지스틱 회귀분석과 신경망보다 더 나은 성능을 가지는 것으로 나타났다.

로지스틱회귀모형에서 로그-밀도비를 이용한 변수의 선택 (Variable Selection with Log-Density in Logistic Regression Model)

  • 강명욱;신은영
    • Communications for Statistical Applications and Methods
    • /
    • 제19권1호
    • /
    • pp.1-11
    • /
    • 2012
  • 로지스틱회귀모형에서 반응변수가 주어졌을 때 설명변수의 조건부 확률분포의 로그-밀도비는 어떤 설명변수가어떻게모형에포함되는지에대한변수선택문제에서유용한정보를제공한다. 설명변수의 조건부 확률분포가 좌우대칭이 아닌 경우 감마분포로 가정하는 것이 적절하다. 여러 가지 모의실험을 수행한 결과를 보면, $x{\mid}y$ = 0과 $x{\mid}y$ = 1의 두 분포가 겹치는 경우에서는 x항과 log(x)항 모두 필요하다. 그리고 두 분포가 분리된 경우에는 x항 또는 log(x)항 중 하나만 필요하다.

스플라인을 이용한 스코어 카드

  • 최민성;구자용;최대우
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.285-288
    • /
    • 2003
  • 신용위험 관리에서 필수적인 방법론이 스코어 카드이며 이를 작성하는 데에 있어서 널리 쓰이는 방법 중의 하나가 로지스틱 회귀분석이다. 본 논문에서는 로지스틱 회귀 방법에 기초한 스플라인 방법론을 소개하고자 한다. 최종 스코어 카드는 연속형 변수를 범주형 변수화 하므로 조각 선형 스플라인을 채택하였다. 모의 실험을 통하여 제안된 방법의 성 능을 규명 하였다.

  • PDF

데이터마이닝을 위한 혼합 데이터베이스에서의 속성선택

  • 차운옥;허문열
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.103-108
    • /
    • 2003
  • 데이터마이닝을 위한 대용량 데이터베이스를 축소시키는 방법 중에 속성선택 방법이 많이 사용되고 있다. 본 논문에서는 세 가지 속성선택 방법을 사용하여 조건속성 수를 60%이상 축소시켜 결정나무와 로지스틱 회귀모형에 적용시켜보고 이들의 효율을 비교해 본다. 세 가지 속성선택 방법은 MDI, 정보획득, ReliefF 방법이다. 결정나무 방법은 QUEST, CART, C4.5를 사용하였다. 속성선택 방법들의 분류 정확성은 UCI 데이터베이스에 주어진 Credit 승인 데이터베이스와 German Credit 데이터베이스를 사용하여 10층-교차확인 방법으로 평가하였다.

  • PDF

로지스틱 회귀분석 및 AHP 기법을 이용한 산사태 위험지역 분석 - 안성시를 대상으로 - (Analysis of Landslide Hazard Area using Logistic Regression/AHP - Anseong-si -)

  • 이용준;박근애;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.2001-2005
    • /
    • 2006
  • 우리나라는 매년 집중호우로 인한 산사태로 인해 인적, 물질적 피해를 일으킨다. 반복적인 산사태의 피해를 방지 하기위해서는 산사태 예측 시스템이 필요하다. 본 연구에서는 안성시를 대상으로 GIS와 RS 자료를 활용하여 산사태 위험지를 분석하고자 Logistic 회귀분석 방법과 AHP 기법을 이용하였다. Logistic 회귀분석과 AHP 기법에는 6개의 인자(경사, 경사향, 고도, 토양배수, 토심, 토지이용)를 사용하여, 7등급으로 산사태 위험도를 분류하였다. Logistic 회귀분석 방법과 AHP 기법을 이용한 산사태 위험지도를 표본 자료와 비교하면 산사태가 발생한 표본에서 산사태 위험성이 높은(1-2등급)지역이 Logistic 회귀분석에서는 46.1% AHP 기법은 48.7%로 분류되어 AHP 기법이 분류도가 높다고 분석 되었다. 하지만 Logistic 회귀분석과 AHP 기법은 서로 분석 과정의 차이를 가지고 있기 때문에 Logistic 회귀분석과 AHP기법을 적용한 결과에 동일 가중치를 부여한 후 7개 등급으로 재분류(reclass)하여 산사태 위험지역을 추출 할 수 있는 방법론을 제시하였다. 그 결과 산사태가 발생한 표본에서 1-2등급지역이 58.9%로 분석되어 분류정확도를 높일 수 있었다.

  • PDF

WPM(Word Piece Model)을 활용한 구글 플레이스토어 앱의 댓글 감정 분석 연구 (A Study on the Sentiment analysis of Google Play Store App Comment Based on WPM(Word Piece Model))

  • 박재훈;구명완
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.291-295
    • /
    • 2016
  • 본 논문에서는 한국어 기본 유니트 단위로 WPM을 활용한 구글 플레이 스토어 앱의 댓글 감정분석을 수행하였다. 먼저 자동 띄어쓰기 시스템을 적용한 후, 어절단위, 형태소 분석기, WPM을 각각 적용하여 모델을 생성하고, 로지스틱 회귀(Logistic Regression), 소프트맥스 회귀(Softmax Regression), 서포트 벡터머신(Support Vector Machine, SVM)등의 알고리즘을 이용하여 댓글 감정(긍정과 부정)을 비교 분석하였다. 그 결과 어절단위, 형태소 분석기보다 WPM이 최대 25%의 향상된 결과를 얻었다. 또한 분류 과정에서 로지스틱회귀, 소프트맥스 회귀보다는 SVM 성능이 우수했으며, SVM의 기본 파라미터({'kernel':('linear'), 'c':[4]})보다 최적의 파라미터를 적용({'kernel': ('linear','rbf', 'sigmoid', 'poly'), 'C':[0.01, 0.1, 1.4.5]} 하였을 때, 최대 91%의 성능이 나타났다.

  • PDF