공적연금제도는 장기적 유지 및 운영을 위해 기금의 재정건전성 및 지속가능성 진단을 목적으로 재정계산제도를 운영하고 있다. 정확한 재정계산은 매우 중요하며 이를 위한 선행작업으로 재정계산에 요구되는 기본 가정들을 보다 합리적으로 추정해야 할 필요가 있다. 본 연구는 로지스틱 회귀분석(logistic regression)을 이용하여 사학연금의 재정계산에 적용되는 다양한 기초율들 중 퇴직률을 산출하는 것에 그 목적이 있다. 사학연금은 현재 퇴직률을 교원 및 직원에 대하여 각 성별로 총 4개 집단을 구분하여 각 집단별 가입연령과 재직기간에 따라 산출하고 있다. 그러나 본 연구에서는 학교급 등 퇴직률 산출에 있어 보다 유의한 집단 구분이 있는지를 확인하고 보정의 어려움을 피할 수 있는 하나의 대안으로서 로지스틱 회귀분석을 이용하여 퇴직률을 산출해 보았다. 또한 우수한 모형을 판별하기 위해 통계적으로 우수한 모형보다는 실무적으로 사학연금 재정추계에 적합한 모형을 찾는 것을 목표로 하여 퇴직률을 추정한 값을 제시하였다.
Journal of the Korean Data and Information Science Society
/
제28권6호
/
pp.1337-1348
/
2017
본 연구는 질병관리본부에서 실시한 전국 규모의 자료인 지역사회건강조사 2014년 자료를 이용하여 고위험 음주자들의 특성 및 요인을 파악하고 고위험 음주 예측모형을 개발했다. 예측모형 개발은 데이터마이닝 방법 중 로지스틱 회귀분석, 의사결정나무, 신경망 분석 3가지 방법을 적용했으며, 로지스틱 회귀분석의 주요 결과로는 40대 남자의 위험도가 높았고, 사무직과 판매서비스직의 위험도가 높았다. 특히 현재 흡연자인 경우 고위험 음주 위험도가 높았다. 3가지 방법 중 AUROC (area under a receiver operation characteristic curve) 측면에서 신경망 분석과 로지스틱 회귀분석이 가장 높게 나타났다. 또한 고위험 음주 예방을 위한 우선 관리 대상자를 선정함에 있어 신경망 분석과 로지스틱 회귀분석으로 개발된 예측모형의 사후확률을 기초로 두 가지 모형 모두 예측분포의 상위 10%인 집단에 해당되는 경우를 선정한 결과 신경망 분석이나 로지스틱 회귀모형 1가지 모형으로 적용하는 것보다 반응률 및 향상도가 다소 개선되는 것으로 나타났다. 본 연구에서 개발된 고위험 음주 예측모형과 우선 관리 대상자 선정 방법은 문제적 음주 예방 및 개선 교육, 절주 프로그램 개발 등에 보다 세분화되고 효과적인 건강관리 서비스를 제공을 위한 기초자료가 될 수 있을 것이다.
국립축산과학원에서는 2006년 부터 2008년 까지 전국 소비자들을 대상으로 한우 거세우 표본 시료에 대한 관능 평가 조사를 실시하여 데이터를 수집하였으며 본 연구에서는 한우 관능 평가 데이터에 대해 사회 인구학적 요인과 한국 소비자들의 맛 평가에 대한 연관성을 탐구하고자 한다. 소비자 거주지역, 연령, 성별, 직업, 월수입과 쇠고기 부위를 설명변수로 맛등급 평가를 반응변수로 이항 다중 로지스틱 모형과 다항 다중 로지스틱 모형을 적합하고 회귀계수별 유의성 검정과 적합도 검정을 실시한다. 단계별 변수 선택으로 최종 모형을 선택하고 반응변수 범주에 대한 오즈비를 계산하여 맛등급과 설명변수들 간의 관련성을 파악한다. 또한 맛과 관련 있는 연속형 변수를 설명변수로 포함한 경우에 대해서도 이항 다중 로지스틱 모형과 다항 다중 로지스틱 모형을 적합하고 비교한다. 그 결과 거주 지역, 연령, 월수입과 쇠고기 부위 변수들이 선택되었으며 영남지역에서 맛에 대한 오즈가 큰 편이며 수입이 많고 연령이 높을수록 맛에 대한 오즈가 작은 편이었다. 요리법으로는 탕에 대한 구이의 오즈비가 큰 편이며 쇠고기 부위별로는 우둔에 비해서 등심이 다른 부위들 보다 맛에 대한 차이가 크다고 볼 수 있다. 연속형 변수로는 연도가 맛등급에 큰 영향을 미치는 변수로 나타났다.
로지스틱회귀분석은 고객관계관리를 위한 데이터마이닝 분야에서 많이 사용되는 기법인데, 이 분야의 모형설정 과정에서는 연관성이 매우 높은 설명변수들이 모형에 함께 포함되어 다중공선성의 문제를 유발하며, 더욱이 회귀자료에 이상점들이 포함되면 최우추정량은 심각한 결함을 갖게 된다. 두 가지 문제점을 동시에 해결하기 위하여 로버스트주성분로지스틱회귀를 적용할 수 있는데, 본 논문에서는 주성분의 선정기준을 결정하는 모형을 개발하고, 주성분모형에서의 추정치에 미치는 이상점의 영향을 축소하기 위한 로버스트추정법을 제안하였다. 제안된 추정법은 다중공선성과 이상점이 유발하는 문제들을 적절히 해결해 준다는 사실이 모의실험을 통하여 확인되었다.
개인신용평가는 은행이 대출을 승인할 때 수익성 있는 의사결정을 적절히 유도할 수 있는 효과적인 도구이다. 최근 많은 분류 알고리즘 및 모델이 개인신용평가에 사용되고 있다. 개인신용평가 기법은 대체로 통계적 방법과 비 통계적 방법으로 구분된다. 통계적 방법에는 선형회귀분석, 판별분석, 로지스틱 회귀분석, 의사결정나무 등이 포함된다. 비 통계적 방법에는 선형계획법, 신경망, 유전자 알고리즘 및 Support Vector Machines 등이 포함된다. 그러나 신용평가모형 개발을 위해 어떠한 방법이 최선인지에 관해서는 일관된 결론을 내리기는 어렵다. 본 논문에서는 중국 금융기관의 개인 신용 데이터를 사용하여 가장 대표적인 신용평가 기법인 로지스틱 회귀분석, 신경망 그리고 Support Vector Machines의 성능을 비교하고자 한다. 구체적으로, 세 가지 모형을 각각 구축하여 고객을 분류하고 분석 결과를 비교하였다. 분석결과에 따르면, Support Vector Machines이 로지스틱 회귀분석과 신경망보다 더 나은 성능을 가지는 것으로 나타났다.
Communications for Statistical Applications and Methods
/
제19권1호
/
pp.1-11
/
2012
로지스틱회귀모형에서 반응변수가 주어졌을 때 설명변수의 조건부 확률분포의 로그-밀도비는 어떤 설명변수가어떻게모형에포함되는지에대한변수선택문제에서유용한정보를제공한다. 설명변수의 조건부 확률분포가 좌우대칭이 아닌 경우 감마분포로 가정하는 것이 적절하다. 여러 가지 모의실험을 수행한 결과를 보면, $x{\mid}y$ = 0과 $x{\mid}y$ = 1의 두 분포가 겹치는 경우에서는 x항과 log(x)항 모두 필요하다. 그리고 두 분포가 분리된 경우에는 x항 또는 log(x)항 중 하나만 필요하다.
신용위험 관리에서 필수적인 방법론이 스코어 카드이며 이를 작성하는 데에 있어서 널리 쓰이는 방법 중의 하나가 로지스틱 회귀분석이다. 본 논문에서는 로지스틱 회귀 방법에 기초한 스플라인 방법론을 소개하고자 한다. 최종 스코어 카드는 연속형 변수를 범주형 변수화 하므로 조각 선형 스플라인을 채택하였다. 모의 실험을 통하여 제안된 방법의 성 능을 규명 하였다.
데이터마이닝을 위한 대용량 데이터베이스를 축소시키는 방법 중에 속성선택 방법이 많이 사용되고 있다. 본 논문에서는 세 가지 속성선택 방법을 사용하여 조건속성 수를 60%이상 축소시켜 결정나무와 로지스틱 회귀모형에 적용시켜보고 이들의 효율을 비교해 본다. 세 가지 속성선택 방법은 MDI, 정보획득, ReliefF 방법이다. 결정나무 방법은 QUEST, CART, C4.5를 사용하였다. 속성선택 방법들의 분류 정확성은 UCI 데이터베이스에 주어진 Credit 승인 데이터베이스와 German Credit 데이터베이스를 사용하여 10층-교차확인 방법으로 평가하였다.
우리나라는 매년 집중호우로 인한 산사태로 인해 인적, 물질적 피해를 일으킨다. 반복적인 산사태의 피해를 방지 하기위해서는 산사태 예측 시스템이 필요하다. 본 연구에서는 안성시를 대상으로 GIS와 RS 자료를 활용하여 산사태 위험지를 분석하고자 Logistic 회귀분석 방법과 AHP 기법을 이용하였다. Logistic 회귀분석과 AHP 기법에는 6개의 인자(경사, 경사향, 고도, 토양배수, 토심, 토지이용)를 사용하여, 7등급으로 산사태 위험도를 분류하였다. Logistic 회귀분석 방법과 AHP 기법을 이용한 산사태 위험지도를 표본 자료와 비교하면 산사태가 발생한 표본에서 산사태 위험성이 높은(1-2등급)지역이 Logistic 회귀분석에서는 46.1% AHP 기법은 48.7%로 분류되어 AHP 기법이 분류도가 높다고 분석 되었다. 하지만 Logistic 회귀분석과 AHP 기법은 서로 분석 과정의 차이를 가지고 있기 때문에 Logistic 회귀분석과 AHP기법을 적용한 결과에 동일 가중치를 부여한 후 7개 등급으로 재분류(reclass)하여 산사태 위험지역을 추출 할 수 있는 방법론을 제시하였다. 그 결과 산사태가 발생한 표본에서 1-2등급지역이 58.9%로 분석되어 분류정확도를 높일 수 있었다.
본 논문에서는 한국어 기본 유니트 단위로 WPM을 활용한 구글 플레이 스토어 앱의 댓글 감정분석을 수행하였다. 먼저 자동 띄어쓰기 시스템을 적용한 후, 어절단위, 형태소 분석기, WPM을 각각 적용하여 모델을 생성하고, 로지스틱 회귀(Logistic Regression), 소프트맥스 회귀(Softmax Regression), 서포트 벡터머신(Support Vector Machine, SVM)등의 알고리즘을 이용하여 댓글 감정(긍정과 부정)을 비교 분석하였다. 그 결과 어절단위, 형태소 분석기보다 WPM이 최대 25%의 향상된 결과를 얻었다. 또한 분류 과정에서 로지스틱회귀, 소프트맥스 회귀보다는 SVM 성능이 우수했으며, SVM의 기본 파라미터({'kernel':('linear'), 'c':[4]})보다 최적의 파라미터를 적용({'kernel': ('linear','rbf', 'sigmoid', 'poly'), 'C':[0.01, 0.1, 1.4.5]} 하였을 때, 최대 91%의 성능이 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.