• Title/Summary/Keyword: 로어 컨트롤 암

Search Result 3, Processing Time 0.019 seconds

Optimization of Conditions of Forming Quality for Hot-press-formed Lower Control Arm Using Finite Element Analysis (유한요소해석을 이용한 열간프레스성형 적용 로어 컨트롤 암의 성형품질 조건 최적화)

  • Son, Hyun-Sung;Choi, Byung-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Hot-Press-Forming (HPF), an advanced sheet metal forming method using stamping at a high temperature of about $900^{\circ}C$ and quenching in an internally cooled die set, is one of the most successful forming process in producing crash-resistant parts such as pillars and bumpers with complex shape, ultrahigh strength, and minimum springback. To optimize conditions of a forming quality in HPF process and secure a safe product without any failures, such as fractures and wrinkling, the simulations based on the coupled thermo-mechanical analysis for a hot-press-formed lower control arm are applied with Taguchi's orthogonal array experiment. Three factor variables - the friction coefficient, blank shape, and hole location for burring - are selected to be optimized. The most effective condition of a forming quality for a hot-press-formed lower control arm is suggested. The simulation results are confirmed with experimental ones.

Reliability-based Design Optimization for Lower Control Arm using Limited Discrete Information (제한된 이산정보를 이용한 로어컨트롤암의 신뢰성 기반 최적설계)

  • Jang, Junyong;Na, Jongho;Lim, Woochul;Park, Sanghyun;Choi, Sungsik;Kim, Jungho;Kim, Yongsuk;Lee, Tae Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • Lower control arm (LCA) is a part of chassis in automotive. Performances of LCA such as stiffness, durability and permanent displacement must be considered in design optimization. However it is hard to consider different performances at once in optimization because these are measured by different commercial tools like Radioss, Abaqus, etc. In this paper, firstly, we construct the integrated design automation system for LCA based on Matlab including Hypermesh, Radioss and Abaqus. Secondly, Akaike information criterion (AIC) is used for assessment of reliability of LCA. It can find the best estimated distribution of performance from limited and discrete stochastic information and then obtains the reliability from the distribution. Finally, we consider tolerances of design variables and variation of elastic modulus and achieve the target reliability by carrying out reliability-based design optimization (RBDO) with the integrated system.

Experimental Validation of Topology Design Optimization Considering Lamination Direction of Three-dimensional Printing (3D 프린팅 적층 방향을 고려한 위상최적설계의 실험적 검증)

  • Park, Hee-Man;Lee, Gyu-Bin;Kim, Jin-san;Seon, Chae-Rim;Yoon, Minho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • In this study, the anisotropic mechanical property of fused deposition modeling three-dimensional (3D) printing based on lamination direction was verified by a tensile test. Moreover, the property was applied to solid isotropic materials with penalization-based topology optimization. The case of the lower control arm, one of the automotive suspension components, was considered as a benchmark problem. The optimal topological results varied depending on the external load and anisotropic property. Based on these results, two test specimens were fabricated by varying the lamination direction of 3D printing; a tensile test utilizing 3D non-contact strain gauge was also conducted. The measured strain was compared with that obtained by computer-aided engineering response analysis. Quantitatively, the measurement and analysis results are found to have good agreement. The effectiveness of topology optimization considering the lamination direction of 3D printing was confirmed by the experimental result.