Proceedings of the Korean Society of Crop Science Conference
/
2023.04a
/
pp.24-24
/
2023
현대화된 재배법은 작물의 생육을 위해 시설내부의 환경을 제어하고 실시간 센싱 정보를 저장하는 시스템을 구축하고 이를 활용하고 있으나, 작물의 생육·생장에 미치는 직접적인 영향에 대한 생육데이터 취득은 아직까지도 전문 재배사·농민이 수작업을 통해 조사되고 있다. 본 연구는 작물의 생육데이터 자동 취득을 위한 장치를 개발하고 이를 실용화하기 위한 정확도 측정 시험을 진행하였다. 실험을 위한 장치구성은 3D Depth 카메라(Intel D415)와 운용 PC이며 딥러닝 모델을 이용하여 작물의 세부기관을 자동으로 인식하는 모델을 포함한다. 장치는 다양한 재배환경의 작물 생육데이터 취득을 위하여 휴대용, 고정형, 로봇형 3가지 유형으로 개발하였고 측정 정확도 검증은 휴대용 생육측정장치를 활용하여 조사하였다. 이러한 연구를 통해 수작업이 아닌 영상에 의한 생육 데이터수집으로 작물의 생육정보(측정값+이미지)를 확보함으로써 환경데이터와 함께 객관적인 정보에 의한 작물의 생산량, 수확시기 등을 예측하는데 활용될 수 있을것으로 예상된다.
Jeong, Eun Seong;Yang, Myongkyoon;Son, Daesik;Cho, Seong In
Proceedings of the Korean Society for Agricultural Machinery Conference
/
2017.04a
/
pp.143-143
/
2017
산업이 고도화됨에 따라 자동화 기계 및 로봇에 의해 대량 생산 되는 품목과 달리, 작업 절차의 비정형성, 비연속성 등으로 인해 여전히 농업에 많은 인력이 투입되고 있다. 국제노동기구에 따르면, 세계 인력의 절반이 농업 인력에 해당하고 작업 중 부상이나 사망 등으로 인해 가장 위험한 직업군 중 하나에 해당하는 것으로 나타났다. 시설 재배 농업의 경우, 노동집약적인 온실 내 작업 특성상 잘못된 자세로 작업하거나 지나친 작업량 등으로 인해 작업자에게 근골격계 질환이 발생할 수 있다. 근골격계 질환으로 인해 작업효율이 감소하거나 생산비용의 증가로 이어질 수 있으며, 농가 수익에 손실이 발생할 수 있다. 이에 본 연구에서는 현행 시설 재배 농업에서 사용되는 레일 전동 작업차를 이용하여 작업자가 토마토를 수확할 때의 신체에 대한 농작업의 부하를 평가하고자 하였다. 작업차를 이용한 주요 작업 절차는 작물로부터 과실 수확, 과실 상자에 과실 투입, 빈 과실 상자와 가득 찬 과실 상자의 교대, 작업차 위의 과실 상자를 운반용 파레트에 하역하는 순서로 이루어지는 것을 확인하였다. 비디오장비로 촬영된 일련의 농작업 과정을 OWAS, RULA, REBA와 같은 체크리스트형 인간공학적 작업 부하 평가 도구를 이용하여 평가한 결과, 기존 레일 전동 작업차를 이용한 농작업의 근골격계 질환 유발 가능성을 확인하였다. 동작별 위험성을 토대로 근골격계 질환 유발 가능성이 높아 개선이 필요한 농작업 동작을 선정하였다. 선정된 동작은 실험실 내 환경에서 피실험자를 통한 모의 동작의 생체 신호 계측을 통해 신체 부하 정도를 정량적으로 측정할 수 있으며, 보조가 필요한 신체 부위를 특정하거나 안전성 확보가 필요한 동작에 대한 증거가 될 수 있다. 본 연구를 통해 향후 토마토 온실 내 신선도 유지를 위한 레일 전동 작업차의 개발에 작업자의 안전과 효율성 향상을 위한 인간공학적 설계를 적용할 수 있을 것으로 기대한다.
A grape fruit is required for a lot of labor to harvest in time in Korea, since the fruit is cut and grabbed currently by hand. In foreign country, especially France, a grape harvester has been developed for processing to make wine out of a grape, not to eat a fresh grape fruit. However, a harvester which harvests to eat a fresh grape fruit has not been developed yet. Therefore, this study was designed and constructed to develope a image processing system for a fresh grape harvester. Its development involved the integration of a vision system along with an personal computer and two cameras. Grape recognition, which was able to found the accurate cutting position in three dimension by the end-effector, needed to find out the object from the background by using two different images from two cameras. Based on the results of this research the following conclusions were made: The model grape was located and measured within less than 1,100 mm from camera center, which means center between two cameras. The distance error of the calculated distance had the distance error within 5mm by using model image in the laboratory. The image processing system proved to be a reliable system for measuring the accurate distance between the camera center and the grape fruit. Also, difference between actual distance and calculated distance was found within 5 mm using stereo vision system in the field. Therefore, the image processing system would be mounted on a grape harvester to be founded to the position of the a grape fruit.
Kim, Gyu-Min;Park, Sung-Jun;Hwang, Seung-Jun;Kim, Hee Yeong;Baek, Joong-Hwan
Journal of Advanced Navigation Technology
/
v.25
no.1
/
pp.115-123
/
2021
Pine nuts are Korea's representative nut forest products and profitable crops. However, pine nuts are harvested by climbing the trees themselves, thus the risk is high. In order to solve this problem, it is necessary to harvest pine nuts using a robot or an unmanned aerial vehicle(UAV). In this paper, we propose a deep learning based detection method for harvesting pine nut in UAV aerial images. For this, a video was recorded in a real pine forest using UAV, and a data augmentation technique was used to supplement a small number of data. As the data for 3D detection, Unity3D was used to model the virtual pine nut and the virtual environment, and the labeling was acquired using the 3D transformation method of the coordinate system. Deep learning algorithms for detection of pine nuts distribution area and 2D and 3D detection of pine nuts objects were used DeepLabV3+, YOLOv4, and CenterNet, respectively. As a result of the experiment, the detection rate of pine nuts distribution area was 82.15%, the 2D detection rate was 86.93%, and the 3D detection rate was 59.45%.
Triboelectric nanogenerator (TENG) devices have generated a lot of interest in recent decades. TENG technology, which is one of the technologies for harvesting mechanical energy among the energy wasted in the environment, is obtained by the dual effect of electrostatic induction and triboelectric charging. Recently, a multilayer thin film stacking method (or layer-by-layer (LbL) self-assembly technique) is being considered as a method to improve the performance of TENG and apply it to new fields. This LbL assembly technology can not only improve the performance of TENG and successfully overcome the thickness problem in applications, but also present an inexpensive, environmentally friendly process and be used for large-scale and mass production. In this review, recent studies in the accomplishment of LbL-based materials for TENG devices are reviewed, and the potential for energy harvesting devices reviewed so far is checked. The advantages of the TENG device fabricated by applying the LbL technology are discussed, and finally, the direction and perspective of this fabrication technology for the implementation of various ultra-thin TENGs are briefly presented.
Ali Asgher Syed;Jaehawn Lee;Alvaro Fuentes;Sook Yoon;Dong Sun Park
Journal of Internet of Things and Convergence
/
v.10
no.4
/
pp.43-53
/
2024
Tomatoes are rich in nutrients like lycopene, β-carotene, and vitamin C. However, they often suffer from biological and environmental stressors, resulting in significant yield losses. Traditional manual plant health assessments are error-prone and inefficient for large-scale production. To address this need, we collected a comprehensive dataset covering the entire life span of tomato plants, annotated across 5 health states from 1 to 5. Our study introduces an Attention-Enhanced DS-ResNet architecture with Channel-wise attention and Grouped convolution, refined with new training techniques. Our model achieved an overall accuracy of 80.2% using 5-fold cross-validation, showcasing its robustness in precisely classifying the health states of tomato plants.
This study developed a manipulator for robotic harvester to harvest cucumber. The manipulator was designed and built fur transferring an end-effecter from a fixed point to a specified cucumber. Its development involved the integration of a manipulating system with a PC compatible, DC motors, geared boxes, timing belts, and a motor controller board. Software, written in Quick basic. combined the functions of motor control with various circumstances. In order to move smoothly and rapidly the manipulator, it's shoulder link and elbow link were minimized by using rotational inertial moment without a motor and a geared box. After 30 replications of exercising the manipulator, it was concluded that the precision values of the X, Y and Z axes were less than 0.5mm, 7.25mm and 0.35mm, respectively. The precision data indicated the manipulator was not missing any steps fur the harvester to reach a target cucumber.
The end-effector is the one of the important factors on development of the cucumber robot to harvester a cucumber. Three end-effectors were designed the single blade end-effector with one blade, the double blade end-effector with two blades and the triple blade end-effector with three blades. Performance tests of the end-effector, the fully integrated system, were conducted to determine the cutting rate by using two different kinds of cucumber. The success rates of cucumber cutting ratio of single end-effector, double end-effector and triple end-effector in laboratory. were 61.7%, 95%, 86.7%, respectively. The cutting rate of single blade or double blade was a little difference with respect to the different diameters of cucumber stem. However, the success cutting rate of the end-effector with triple blade was 61.7% under 29mm diameter of a grabbing stem section. The triple end-effector was not suitable for harvesting a cucumber, but was considered to be suitable for harvesting a grape, an apple and a tomato. The success rate of cucumber cutting ratio of triple end-effectors in greenhouse was 84%. The failure cutting rate was 16% which are due to abnormal shape of cucumber fruit.
Journal of Practical Agriculture & Fisheries Research
/
v.23
no.2
/
pp.99-111
/
2021
The connected farm that agricultural land, agricultural machinery and farmer are connected with an IoT gateway is in the commercialization stage. That has increased productivity, efficiency and profitability by intimate information exchange among those. In order to develop the educational program of intelligent agricultural machinery and the agricultural machinery safety education performance indicator, this study analyzed patent trends of agricultural machine with unmanned technology used in agriculture and efficiency technology applied advanced technologies such as ICT, robots and artificial intelligence. We investigated and analyzed patent trends in agricultural machinery of Korea, the USA and Japan as well as the countries in Europe. The United States is an advanced country in the field of unmanned technology and efficiency technology used in agriculture. Agricultural automation technology in Korea is insufficient compared to developed countries, which means rapid technological development is needed. In the sub-fields of field automation technology, path generation and following technology and working machine control technology through environmental awareness have activated.
Ki Hyun Kwon;Jong Hyeok Roh;Ah-Na Kim;Tae Hyong Kim
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.16
no.6
/
pp.392-399
/
2023
This paper proposes a deep learning model to determine the region and depth of cabbage cores for robotic automation of the cabbage core removal process during the kimchi manufacturing process. In addition, rather than predicting the depth of the measured cabbage, a model was presented that simultaneously detects and classifies the area by converting it into a discrete class. For deep learning model learning and verification, RGB images of the harvested cabbage 522 were obtained. The core region and depth labeling and data augmentation techniques from the acquired images was processed. MAP, IoU, acuity, sensitivity, specificity, and F1-score were selected to evaluate the performance of the proposed YOLO-v4 deep learning model-based cabbage core area detection and classification model. As a result, the mAP and IoU values were 0.97 and 0.91, respectively, and the acuity and F1-score values were 96.2% and 95.5% for depth classification, respectively. Through the results of this study, it was confirmed that the depth information of cabbage can be classified, and that it can be used in the development of a robot-automation system for the cabbage core removal process in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.