• Title/Summary/Keyword: 로봇 보조

Search Result 250, Processing Time 0.028 seconds

Effectiveness and Safety of Robot-Assisted Brain Stereotactic Surgery: A Systematic Review (뇌정위 수술 보조 로봇 시스템의 안전성과 유효성: 체계적 문헌고찰)

  • Park, Sun-young;Jeon, Mi Hye
    • The Journal of Health Technology Assessment
    • /
    • v.6 no.2
    • /
    • pp.142-147
    • /
    • 2018
  • Objectives: The purpose of this study is to evaluate the safety and effectiveness of Robot-Assisted Brain Stereotactic Surgery with a systematic review. Methods: Electronic literature was searched using KoreaMed, Ovid-MEDLINE, Ovid-EMBASE, and Cochrane Library on 6th April 2017. Two authors screened 1218 citations. Duplicated articles of 456 excluded, the remaining 762 articles were reviewed with title and abstract. Results: A total of 8 studies were selected in this review. The device used in all studies was $ROSA^{TM}$. In one cohort study comparing the intervention ($ROSA^{TM}$) with the control (conventional stereotactic surgery), hematoma was reported no significant difference between groups. In six descriptive studies, one study reported hematoma 10% (10/100) and temporary nerve impairment 6% (6/100) using the ROSA; while five descriptive study did not report any complications. In one cohort, the localization precision were 1.2 mm in the intervention group and 1.1 mm in the control group; the localization success rate as 78.2% in the intervention group and 76.2% in the control group in one cohort; and the average time for surgery as 130 min for the intervention group and 352 min for the control group in one cohort. Four studies reported the localization success rate as 100%; two out of three articles reported the overall time for surgery as 56 min and 90 min, while one article reported the time as less than one hour in 50% of patients (50/100); two articles reported in epilepsy patients, the condition after the surgery was Engel level I in 66.2%, 75% patients, Engel level II-III in 25%, 26.5% patients, and Engel level 4 in 7.3% patients. Conclusion: Robot-Assisted Brain Stereotactic Surgery is a safe and accurate technique that can significantly reduce the time for the brain stereotactic surgery. However, further studies are needed to generalize the results.

Short-Term Clinical Effects of Robot-Assisted Gait Training Applied to Patients Undergoing Lower Extremity Surgery: A Pilot Study (하지 수술환자에게 적용한 로봇보조 보행훈련의 단기간 임상적 효과: 예비 연구)

  • Lee, Ha-Min;Kwon, Jung-Won
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.295-306
    • /
    • 2022
  • Purpose: This study aimed to investigate the effect of robot-assisted gait training on the active ranges of motion, gait abilities, and biomechanical characteristics of gait in patients who underwent lower extremity surgery, and to verify the effectiveness and clinical usefulness of robot-assisted gait training. Methods: This study was conducted on 14 subjects who underwent lower extremity surgery. The subjects participated in robot-assisted gait training for 2 weeks. The active ranges of motion of the lower extremities were evaluated, and gait abilities were assessed using 10-m and 2-min walk tests. An STT Systems Inertial Measurement Unit was used to collect data on biomechanical characteristics during gait. Spatiotemporal parameters were used to measure cadence, step length, and velocity, and kinematic parameters were used to measure hip and knee joint movement during gait. Results: Significant improvements in the active ranges of motion of the hip and knee joints (flexion, extension, abduction, and adduction) and in the 10-m and 2-min walk test results were observed after robot-assisted gait training (p < 0.05). In addition, biomechanical characteristics of gait, spatiotemporal factors (cadence, step length, and velocity), and kinematic factors (gait hip flexion-extension, internal rotation-external rotation angle, and knee joint flexion-extension) were also significantly improved (p < 0.05). Conclusion: The results of this study are of clinical importance as they demonstrate that robot-assisted gait training can be used as an effective intervention method for patients who have undergone lower extremity surgery. Furthermore, the findings of this study are clinically meaningful as they expand the scope of robot-assisted gait training, which is currently mainly applied to patients with central nervous system conditions.

Long-term Effect of Robot-assisted Step Training on the Strength of the Lower Extremity and Gait Speed in a Chronic Stroke Patient: A Preliminary Study (장기간의 로봇 보조 스텝훈련이 만성 뇌졸중 환자의 하지 근력과 보행속도에 미치는 영향: 예비 연구)

  • Se-Jung, Oh;Yong-Jun, Cha;Jongseok, Hwang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.4
    • /
    • pp.65-73
    • /
    • 2022
  • PURPOSE: The present research examined the effects of progressive robot-assisted step training on the strength of the lower extremity and gait speed of an individual with stroke through changes between the baseline and the intervention stage (1, 3, 6, 9, and 12 months). METHODS: A single-subject (A-B) design was performed for a chronic stroke patient aged 70 years old. The robot-assisted step training was conducted three times a week during 12 months (40 minutes/session), and the assessment was conducted a total of seven times between the baseline and the intervention (No. 1, 3, 6, 9, and 12 months) to determine the effect of the intervention. RESULTS: As a result of the intervention, the muscle strength at the lower extremity of the paralysis side increased by the greatest extent 12 months after the intervention compared to the baseline, and the gait speed via the 10-meter walk test was increased as well. CONCLUSION: Long-term robot-assisted step training might be an effective intervention for improving the strength of the paretic lower extremity muscles and gait speed in stroke patients with difficulty walking independently. Further studies with sufficient sample sizes and a randomized control group will be needed to evaluate the long-term effects of robotic stepping rehabilitation.

The Pilot Study of Robot-Assisted Training for the Lower Extremity Rehabilitation of Burn Patients (하지 화상 환자의 재활치료를 위한 보행보조 로봇훈련의 선행연구)

  • Cho, Yoon Soo;Noh, Min Hye;Joo, So Young;Seo, Cheong Hoon
    • Journal of the Korean Burn Society
    • /
    • v.23 no.2
    • /
    • pp.31-36
    • /
    • 2020
  • Purpose: Scar contracture influence the outcome of burn patients significantly. This study aims to investigate the feasibility of robot-assisted training for the lower extremity rehabilitation of burn patients. Methods: This pilot study was conducted on 7 burn patients for 8 weeks between January 2019 and November 2019. Two of 7 patients withdrew from this study because one had skin abrasion on the legs which thigh fastening devices were applied on and the other was not participate in the assessment at 4 weeks after training. Final 5 patients received gait training with SUBAR® and numeric rating scale (NRS), 6-minutes walking test, and range of motion in flexion and extension of knee and ankle joint were evaluated before training, 4 weeks and 12 weeks after training. Results: The subjects had a mean age of 51.8±98 years, mean total burn surface area of 30.8±13.7%, mean duration from injury to 1st assessment of 102.8±39.3 days. Anyone of 5 patients did not have musculoskeletal or cardiovascular side effects such as increased or decreased blood pressure or dizziness. The significant improvement in NRS, gait speed, and range of motion in knee extension and ankle plantarflexion after robotic training (all P<0.05). Conclusion: Robot-assisted training could be feasible for the rehabilitation of burn patients and it could improve muscle strength and range of motion in lower extremities, and gait function.

Korean Text Image Super-Resolution for Improving Text Recognition Accuracy (텍스트 인식률 개선을 위한 한글 텍스트 이미지 초해상화)

  • Junhyeong Kwon;Nam Ik Cho
    • Journal of Broadcast Engineering
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2023
  • Finding texts in general scene images and recognizing their contents is a very important task that can be used as a basis for robot vision, visual assistance, and so on. However, for the low-resolution text images, the degradations, such as noise or blur included in text images, are more noticeable, which leads to severe performance degradation of text recognition accuracy. In this paper, we propose a new Korean text image super-resolution based on a Transformer-based model, which generally shows higher performance than convolutional neural networks. In the experiments, we show that text recognition accuracy for Korean text images can be improved when our proposed text image super-resolution method is used. We also propose a new Korean text image dataset for training our model, which contains massive HR-LR Korean text image pairs.

A Systematic Review of the Effects of Robotic-Assisted Training on Gait Performance in Persons with Subacute Hemiparetic Stroke (아급성 편마비 뇌졸중 환자의 보행에 로봇-보조훈련이 미치는 영향에 관한 체계적 고찰)

  • Se-in Park;Su-jin Hwang
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Purpose: This systematic review aims to determine whether robot-assisted training is more effective in gait training for persons with subacute hemiparetic stroke. Methods: This study adopted a systematic review study design focused on subacute hemiparetic stroke, and four core academic databases were searched until June 11, 2021, for relevant studies, including PubMed, Embase, the Cochrane Library, and ProQuest Central. The review included randomized controlled trials (RCTs) evaluating the effects of robotic-assisted training on gait performance in persons with a diagnosis of subacute hemiparetic stroke. The selected RCT studies were qualitatively synthesized based on the population, intervention, comparison, outcome, settings, and study design (PICOS-SD). Results: The study selected five RCTs involving 253 subacute hemiparetic stroke patients and performing robotic-assisted gait training using the following devices: the Lokomat, Morning Walk, Walkbot, ProStep Plus, or Gait Trainer II. Five RCTs were eligible for the meta-analysis after quantitative synthesis, and the results showed that the robot-assisted gait training group had a greater gait performance than the control group based on the 10-meter walk test, Berg balance scale, Rivermed mobility index, functional ambulation category, and modified Barthel index. Conclusion: The results of this study showed that the gait performance of subacute hemiparetic stroke patients changes throughout robot-assisted gait training, but there were no indications that any of the clinically relevant effects of robot-assisted training are greater than those of conventional gait training. Further, the small sample size and different therapeutic intensities indicate that definitive conclusions could not be made.

Effects of Robot-Assisted Arm Training on Muscle Activity of Arm and Weight Bearing in Stroke Patients (로봇-보조 팔 훈련이 뇌졸중 환자의 팔에 근활성도와 체중지지에 미치는 영향)

  • Yang, Dae-jung;Lee, Yong-seon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.71-80
    • /
    • 2022
  • Background: This study investigated the effect of robot-assisted arm training on muscle activity of arm and weight bearing in stroke patients. Methods: The study subjects were selected 20 stroke patients who met the selection criteria. 10 people in the robot-assisted arm training group and 10 people in the task-oriented arm training group were randomly assigned. The experimental group performed robot-assisted arm training, and the control group performed task-oriented arm training for 6 weeks, 5 days a week, 30 minutes a day. The measurement tools included surface electromyography and smart insole system. Data were analyzed using independent sample t-test and the paired sample t-test. Results: Comparing the muscle activity of arm within the group, the experimental group and the control group showed significant differences in muscle activity in the biceps brachii, triceps brachii, anterior deltoid, upper trapezius, middle trapezius, and lower trapezius. Comparing the muscle activity of arms between the groups, the experimental group showed significant difference in all muscle activity of arm compared to the control group. Comparing the weight bearing within the groups, the experimental group showed significant difference in the affected side and non-affected side weight bearings and there were significant differences in anterior and posterior weight bearing. The control group showed significant difference only in the non-affected side weight bearing. Comparing the weight bearings between groups, the experimental group showed significant difference in the affected side and non-affected side weight bearings compared to the control group. Conclusion: This study confirmed that robot-assisted arm training applied to stroke patients for 6 weeks significantly improved muscle activity of arm and weight bearing. Based on these results, it is considered that robot-assisted arm training can be a useful treatment in clinical practice to improve the kinematic variables in chronic stroke patients.

The Effects of Robot Assisted Gait Training on Kinematic Factors of the Stroke Patients (로봇보조 보행훈련이 뇌졸중 환자의 운동학적 요인에 미치는 효과)

  • Kim, Sung-Chul;Kim, Mi-Kyong;Yang, Dae-Jung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.1
    • /
    • pp.91-99
    • /
    • 2022
  • Purpose : The goal of this study is to examine the effect of robot assisted gait training (RAGT) on the kinematic factors (temporospatial gait parameters, gait cycle ratio, and gait line length) of gait in stroke patients. Methods : The subjects of this study were 24 stroke patients selected by inclusion criteria. Participants were randomly allocated to two groups: robot assisted gait training (n=11) and general neurological physical therapy group (n=11). In the robot-assisted gait training group, robot-assisted gait training was mediated for 30 minutes a day in addition to general neurological physical therapy. The general neurological physical therapy group was mediated by general neurological physical therapy for 30 minutes a day in addition to general neurological physical therapy. The number of interventions was 5 times a week for 5 weeks. In order to compare the kinematic factors of walking between the two groups, gait analysis was performed before and after 5 weeks of training using the Zebris gait analysis system. Results : As a result of the gait analysis of the two groups, there were significant differences in temporospatial gait variables (step length, stride length, step width, step time, stride time), gait cycle ratio (swing phase, stance phase) and gait line length. However, there was no significant difference in the cadence (temporospatial gait parameters) in the robot assisted gait training group compared to general neurological physical therapy group. Conclusion : It is considered to be a useful treatment for stroke patients to promote the recovery of gait function in stroke patients. Based on the results of this study, continuous robot assisted gait training treatment is considered to have a positive effect on gait ability, the goal of stroke rehabilitation. In the future, additional studies should be conducted on many subjects of stroke patients, the kinematic factors of the legs according to the severity of stroke and treatment period, and the effect of gait training.

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.

Art based STEAM Education Program using EPL (EPL을 활용한 예술 중심의 STEAM 교육 프로그램)

  • Jeon, SeongKyun;Lee, YoungJun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.149-158
    • /
    • 2014
  • The rapidly changing 21st-century knowledge and information society is emphasizing converged education that crosses various academic fields. In particular, the society expected the cultivation of the talent who balance scientific creativity and artistic sensitivity by adding arts to the existing converged education revolving around science and technology. However, at present, most STEAM education has been actively conducted with a focus on science and technology, whereas the subject of arts has been regarded or utilized as a supplementary means. Its problem is that the educational characteristics and values of art education have not been effectively utilized in educational terms and this could lead to superficial integrated education. In this respect, this study had the knowledge of various fields, such as science, technology, and mathematics, utilized usefully during the process of experiencing and creating arts. Accordingly, this study designed an education programs as with the case of Nam-Jun Baek who expanded the dominion of arts by creatively utilizing his own time's scientific technologies. In this educational process, the target program was developed in a manner that enables EPL to be utilized essentially as the study's knowledge-based tool and medium. The results of applying this educational program in 5th-grade elementary school students showed that the program has positive effects on the creative attributes of the students.