• Title/Summary/Keyword: 로봇차량

Search Result 298, Processing Time 0.03 seconds

Implementation and Balancing Control of a Robotic Vehicle for Entertainment (엔터테인먼트용 로봇차량의 제작과 균형 제어)

  • Kim, Hyun Wook;Cho, Seong-Taek;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.736-740
    • /
    • 2014
  • This paper presents the driving and balancing control of an entertainment robot vehicle that can carry two persons. The entertainment robot vehicle is built with the purpose of carrying passengers with two wheels. It has two driving modes: a balancing mode with two wheels and a driving mode with three wheels. Three cases of different modes are verified by experimental studies. Firstly, a driving mode is tested with two passengers to check the functionality of the vehicle. Secondly, the balancing control performance is tested. Lastly, the balancing control performance under the disturbance is tested.

Implementation of Unmanned Fuel Dispensing Robot System (패턴인식을 이용한 무인 주유 로봇의 구현)

  • Jeong, Geun-Yong;Kang, Hyun-su;Kim, Chan-Sung;Lee, Sang-jin;Lee, Young-sup
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.91-93
    • /
    • 2011
  • 본 논문은 영상처리 및 센서를 이용하여 주유할 차량으로 이동, 주유구 인식 및 개폐, 주유까지의 과정을 처리할 수 있는 무인 주유 로봇의 구현 과정을 기술하였다. 캐터펄트는 자동차가 주차된 곳에 정확히 멈추게 되고, 로봇 팔이 영상 처리를 이용하여 주유구 위치를 찾아낸 뒤 주유를 시작한다. 로봇은 현 주유 시스템의 불편한 점을 사람 없이 전 과정을 처리하는 역할을 함으로써 주유소를 무인화하여 인건비를 최소화 시키고, 악천후 상황에서 주유의 편리성을 기대할 수 있다.

A Study on Energy Efficiency of Quadruped Walking Robot (4족 보행 로봇의 에너지효율에 관한 연구)

  • 안병원;배철오;박영산;박중순;이성근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.309-312
    • /
    • 2003
  • Though a legged robot has high terrain adaptability as compared with a wheeled vehicle, its moving speed is considerably low in general. For attaining a high moving speed with a legged robot, a dynamically stable walking, such as running for a biped robot and a trot gait or a bound gait for a quadruped robot, is a promising solution. However, energy efficiency of a dynamically stable walking is generally lower than the efficiency of a stable gait such as a crawl gait. In this paper, we present an experimental study on the energy efficiency of a quadruped walking vehicle. Energy consumption of two walking patterns for a trot gait is investigated though experiments using a TITAN-VIII.

  • PDF

The Research of People with Disabilities Satisfaction about Loading Wheelchair while Boarding on Vehicle (장애인의 차량 탑승 시 휠체어 수납에 대한 만족도 조사)

  • Rhee, K.M.;Lee, J.H.;Lee, S.C.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, when wheelchair user get into the vehicle, we have thorough grasp of the problems of loading wheelchair and give effect to suggest conceptual design in relation to develop manufactured goods. We choose 50 participants with disabilities who manual wheelchair or motor scooter users are able to drive own's vehicle, and the method practice in the direct survey. There are some limitations in this study especially in terms of the sampling population. The 88%(n=44) of the participant replied to the driver with disabilities need assistive devices for loading manual wheelchair. They prefer a system that robot arm brings the wheelchair out of the trunk to the driver's seat door.

  • PDF

Development of Remote Control Station and Unmanned Ground Vehicle using Emergency Operation Technique in Combat Field Situation (전장 환경에서의 비상 운용기법을 활용한 무인지상로봇과 원격통제장치 개발)

  • Lee, Jun-Pyo;Cho, Chul-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.225-233
    • /
    • 2011
  • In this paper, we propose a remote control station based on the awareness of various combat field situation in order for operating multiple unmanned ground vehicles. Our remote control station is capable of sending a variety of messages designed for carrying out the skillful movement for collaborate among unmanned ground vehicles, gathering the information related with combat field situation, and completing the assigned missions which are described by operator in advance. To verify the effectiveness of our proposal, we develop the sophisticated remote control station and conduct a great many remote operating tests for multiple unmanned ground vehicles.

Unmanned Driving of Vehicle Using Guidance System Based on Magnetic Marker (자계표식기반 안내시스템을 이용한 차량의 무인주행)

  • Im, Dae-Yeong;Ryoo, Young-Jae;Choi, Min-Hyok
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.67-70
    • /
    • 2008
  • 본 논문에서는 자계표식기반 안내시스템을 이용한 차량의 무인주행을 제안한다. 자계기반 안내시스템에서 가장 중요한 것은 자계도로상의 자석의 위치예측이다. 자석의 위치를 예측하기 위하여 자석과 센서의 상관관계를 해석하여 도로에 매설된 자석의 위치를 검출하기 위한 배열형 자계표식위치인식센서를 개발하였다. 또한 자동모드와 수동모드의 동작을 위해 스텝모터를 이용한 조향제어장치를 개발하였다. 자율주행 실험을 위해 자계기반 자계도로를 구성하였다. 그리고 로봇형 차량을 자계도로에서 실험을 통해 실용성을 입증하였다.

  • PDF

Backward-Motion Control of Multiple Off-Hooked Trailers Using a Car-Like Mobile Robot (차량형 로봇을 이용한 다중 Off-Hooked 트레일러의 후진 제어)

  • Chung, Woo-Jin;Yoo, Kwang-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.273-280
    • /
    • 2009
  • It is difficult to find a practical solution for the backward-motion control of a car-like mobile robot with n passive trailers. Unlike an omni-directional robot, a car-like mobile robot has nonholonomic constraints and limitations of the steering angle. For these reasons, the backward motion control problem of a car-like mobile robot with $n$ passive trailers is not trivial. In spite of difficulties, backing up a trailer system is useful for parking control. In this study, we proposed a mechanical alteration which is connecting $n$ passive trailers to the front bumper of a car to improve the backward motion control performance. Theoretical verification and simulations show that the backward-motion control of a general car with n passive trailers can be successfully carried out by using the proposed approach.

  • PDF

A Study on the Behavior of Skid Sleeving on Unmanned Wheeled Vehicle with Suspension System (6x6 인휠로봇차량의 회전차조향거동에 관한 연구)

  • Cho, Sung-Won;Han, Chang-Soo;Lee, Jeong-Yeob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.79-85
    • /
    • 2007
  • The skid-steering method that applied a number of mobile robot currently is very effective in narrow area. But it contains several problems of its natural properties, slip, occurred by different direction between vehicle's driving and wheel's rotary. From this thesis we want to suggest suitable structure of $6{\times}6$ skid steering wheeled vehicle and method of driving by analyzing the behavior of $6{\times}6$ skid-steered wheeled vehicle by engineering analytical method

MEMS GPS/INS Navigation System for an Unmanned Ground Vehicle Operated in Severe Environment (극한 무인 로봇 차량을 위한 MEMS GPS/INS 항법 시스템)

  • Kim, Sung-Chul;Hong, Jin-Seok;Song, Jin-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.133-139
    • /
    • 2007
  • An unmanned ground vehicle can perform its mission automatically without human control in unknown environment. To move up to a destination in various surrounding situation, navigational information is indispensible. In order to be adopted for an unmanned vehicle, the navigation box is small, light weight and low power consumption. This paper suggests navigation system using a low grade MEMS IMU for supplying position, velocity, and attitude of an unmanned ground vehicle. This system consists of low cost and light weight MEMS sensors and a GPS receiver to meet unmanned vehicle requirements. The sensors are basically integrated by loosely coupled method using Kalman filter and internal algorithms are divided into initial alignment, sensor error compensation, and complex navigation algorithm. The performance of the designed navigation system has been analyzed by real time field test and compared to commercial tactical grade GPS/INS system.