• 제목/요약/키워드: 로봇차량

검색결과 299건 처리시간 0.026초

퍼지 제어 알고리즘을 이용한 차량 조향 장치용 표면 부착형 영구자석 동기 전동기의 속도제어 (Speed Control of a Permanent Magnet Synchronous Motor for Steering System Using Fuzzy Algorithm)

  • 반동훈;박종오;임영도
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.526-531
    • /
    • 2012
  • This paper, we describe the vector control of surface mounted PMSM (Permanent Magnet Synchronous Motor) using the fuzzy controller which is suggested algorithm. In these days, when vehicle is operated or not, whether the road is covered or not, the sensitivity of the steering column is not stable. To make up for it, the PI gain of a steering column controller is adjusted by experience. It becomes the price because it need a lot of sensor. Also it is difficult to implement robust control because we need a lot of parameters for variable road conditions which are the off road, the on road, a low battery voltage, a high battery voltage, a vehicle speed. In this paper, we propose fuzzy controller using the suggested algorithm which suitable for steering system. We test the fuzzy controller with the various condition. We get the good performance of fuzzy controller even if it is nonlinear system. We check a robust the fuzzy controller using the suggested algorithm.

차량 네트워크 시스템의 결함 허용을 위한 IEEE 1451 기반 중복 CAN 모듈의 구현 (Implementation of IEEE 1451 based Dual CAN Module for Fault Tolerance of In-Vehicle Networking System)

  • 이종갑;김만호;박지훈;이석;이경창
    • 제어로봇시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.753-759
    • /
    • 2009
  • As many systems depend on electronics in an intelligent vehicle, concern for fault tolerance is growing rapidly. For example, a car with its braking controlled by electronics and no mechanical linkage from brake pedal to calipers of front tires(brake-by-wire system) should be fault tolerant because a failure can come without any warning and its effect is devastating. In general, fault tolerance is usually designed by placing redundant components that duplicate the functions of the original module. In this way a fault can be isolated, and safe operation is guaranteed by replacing the faulty module with its redundant and normal module within a predefined interval. In order to make in-vehicle network fault tolerant, this paper presents the concept and design methodology of an IEEE 1451 based dual CAN module. In addition, feasibility of the dual CAN network was evaluated by implementing the dual CAN module.

시스템 모델링 및 주행 시뮬레이션을 통한 인휠드라이브 타입 6WD/6WS 차량 플랫폼의 주행 거동 분석 (Behavior Analysis of In-wheel Drive Type 6WD/6WS Vehicle Based on System Modeling and Driving Simulation)

  • 이정엽;서승환;손웅희;유승남;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.353-360
    • /
    • 2010
  • A skid-steering method which applied to the various mobile robot platforms currently shows its effectiveness in the specified field areas and purposes. This system contains however, several problems of its intrinsic properties such as slippages occurred by different moving direction between vehicle's driving and wheel's rotary and difficulties of driving performance control and so on. This paper deals with the suggestion of suitable control algorithm for 6WD/6WS skid steering wheeled vehicle and verified its feasibility by analyzing the behavior of 6WD/6WS skid-steered wheeled vehicle model and by applying the engineering analytical method to the considered mobile platform. The Performance of vehicle model is evaluated by using slip mode control to follow the steering input and, as a future work, this control algorithm could be applied to real 6WD/6WS in-wheel drive type vehicle finally.

퍼지 슬라이딩 모드를 이용한 4WD 하이브리드 차량의 선회성능 향상 (Fuzzy Sliding Mode Control for Cornering Performance Improvement of 4WD HEV)

  • 정정윤;류성민;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제16권8호
    • /
    • pp.735-743
    • /
    • 2010
  • A new Fuzzy sliding mode controller is proposed to improve the cornering performance of the four wheel hybrid vehicles. The Fuzzy sliding mode control is applied for the control of rear motor and EHB (Electro-Hydraulic Brake) to improve the cornering performance. The modeling of the automobile is simplified that each of the two wheels is modeled as two degrees of freedom object and the friction coefficient between the wheel and the ground is assumed to be constant. The output of the Fuzzy sliding mode algorithm is the direct yaw moment for the rear wheels, which compensates for the slip angle. Through the simulations using ADAMS and MATLAB Simulink, the cornering performance of the proposed algorithm is compared to the conventional PID to show the superiority of the proposed algorithm. In the simulation experiments, the J-Turn and single lane change are used for each of the Fuzzy sliding mode algorithm and PID controller with the optimal gains which are tuned empirically.

다중 Lyapunov 기방 하이브리드 시스템에 안정화 제어기 설계 및 군집 차량의 종방향 거리 제어시스템의 용용 (Design of a Stabilizing Controller for Hybrid systems with as Application to Longitudinal Spacing Control in a Vehicle Platoon)

  • 김진변;최재원;김영호
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.477-486
    • /
    • 2001
  • Many physical systems can be modeled by incorporating continuous and discrete event nature together. Such hybrid systems contain both continuous and discrete states that influence the dynamic be-havior of the systems. There has been an increasing interest in thers types of systems during the last dec-ade, mostly due to the growing usage of computers in the control of physical plants but also as a result of the hybrid nature of physical processes. The stability theory for hybrid systems is considered as extension of Lyapunov theory where the existence of an abstract energy function satisfying certain properties verifies stability, called multiple Lyapunov theory. In this paper, a hybrid stabilizing controller is proposed using the control Lyapunov function method and multiple Lyapunov theory, and the proposed method is applied to lon-gitudinal spacing control in a vehicle platoon for intelligent transportation systems(ITS).

  • PDF

차량용 레이더센서를 이용한 IMM-PDAF 기반 종-횡방향 운동상태 검출 및 추정기법에 대한 성능분석 (Performance Analysis on the IMM-PDAF Method for Longitudinal and Lateral Maneuver Detection using Automotive Radar Measurements)

  • 유정재;강연식
    • 제어로봇시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.224-232
    • /
    • 2015
  • In order to develop an active safety system which avoids or mitigates collisions with preceding vehicles such as autonomous emergency braking (AEB), accurate state estimation of the nearby vehicles is very important. In this paper, an algorithm is proposed using 3 dynamic models to better estimate the state of a vehicle which has various dynamic patterns in both longitudinal and lateral direction. In particular, the proposed algorithm is based on the Interacting Multiple Model (IMM) method which employs three different dynamic models, in cruise mode, lateral maneuver mode and longitudinal maneuver mode. In addition, a Probabilistic Data Association Filter (PDAF) is utilized as a data association algorithm which can improve the reliability of the measurement under a clutter environment. In order to verify the performance of the proposed method, it is simulated in comparison with a Kalman filter method which employs a single dynamic model. Finally, the proposed method is validated using radar data obtained from the field test in the proving ground.

무인 차량을 위한 센서 시스템 개발 및 3차원 월드 모델링 (The Development of Sensor System and 3D World Modeling for Autonomous Vehicle)

  • 김시종;강정원;최윤근;박상운;심인욱;안승욱;정명진
    • 제어로봇시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.531-538
    • /
    • 2011
  • This paper describes a novel sensor system for 3D world modeling of an autonomous vehicle in large-scale outdoor environments. When an autonomous vehicle performs path planning and path following, well-constructed 3D world model of target environment is very important for analyze the environment and track the determined path. To generate well-construct 3D world model, we develop a novel sensor system. The proposed novel sensor system consists of two 2D laser scanners, two single cameras, a DGPS (Differential Global Positioning System) and an IMU (Inertial Measurement System). We verify the effectiveness of the proposed sensor system through experiment in large-scale outdoor environment.

무인자율주행차량의 시스템 아키텍쳐 및 통신 프로토콜 설계 (Development of System Architecture and Communication Protocol for Unmanned Ground Vehicle)

  • 문희창;우훈제;김정하
    • 제어로봇시스템학회논문지
    • /
    • 제14권9호
    • /
    • pp.873-880
    • /
    • 2008
  • This paper deals with the peer-to-peer data communication to connect each distributed levels of developed unmanned system according to the JAUS. The JAUS is to support the acquisition of unmanned system by providing a mechanism for reducing system life-cycle costs. Each of distributed levels of the JAUS protocol divides into a system, some of subsystems, nodes and components/instances, each of which may be independent or interdependence. We have to distribute each of the levels because high performance is supported in order to create several sub-processor computing data in one processor with high CPU speed performance. To complement such disadvantage, we must think the concept that a distributed processing agrees with separating each of levels from the JAUS protocol. Therefore, each of distributed independent levels send data to another level and then it has to be able to process the received data in other levels. So, peer-to-peer communication has to control a data flow of distributed levels. In this research, we explain each of levels of the JAUS and peer-to-peer communication structure among the levels using our developed unmanned ground vehicle.

통계적 회귀 기법을 활용한 초음파 센서 기반의 기둥 및 차량 분류 알고리즘 (Pillar and Vehicle Classification using Ultrasonic Sensors and Statistical Regression Method)

  • 이충수;박은수;이종환;김종희;김학일
    • 제어로봇시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.428-436
    • /
    • 2014
  • This paper proposes a statistical regression method for classifying pillars and vehicles in parking area using a single ultrasonic sensor. There are three types of information provided by the ultrasonic sensor: TOF, the peak and the width of a pulse, from which 67 different features are extracted through segmentation and data preprocessing. The classification using the multiple SVM and the multinomial logistic regression are applied to the set of extracted features, and has achieved the accuracy of 85% and 89.67%, respectively, over a set of real-world data. The experimental result proves that the proposed feature extraction and classification scheme is applicable to the object classification using an ultrasonic sensor.

신경망을 활용한 무인차량의 횡방향 적응 제어 (Adaptive Control for Lateral Motion of an Unmanned Ground Vehicle using Neural Networks)

  • 신종호;허진욱;최덕선;김종희;주상현
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.998-1003
    • /
    • 2013
  • This study proposes an adaptive control algorithm for lateral motion of a UGV (Unmanned Ground Vehicle) using an NN (Neural Networks). The lateral motion of the UGV can be corrupted with various uncertainties such as side slip. In order to compensate the performance degradation of the UGV under various uncertainties, an NN-based adaptive control is designed by utilizing a virtual control concept. Since both the drift and input gain terms are uncertain, the proposed method adapts the whole terms related to the difference between the nominal and real systems. To avoid a singularity problem with the adaptive control, the affine property of the UGV dynamic model is utilized and the overall closed-loop stability is analyzed rigorously. Finally, numerical simulations using Carsim are performed to validate the effectiveness of the proposed scheme.