• Title/Summary/Keyword: 로봇차량

Search Result 298, Processing Time 0.029 seconds

Development of Vehicle Motion Monitoring Module based on Smartphone (스마트폰을 이용한 차량용 주행 모니터링 모듈 개발)

  • Hwang, Jae-Young;Chung, Shin-Il;Chung, Yeon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1903-1909
    • /
    • 2011
  • This paper presents the development of a core module for integrating data from vehicle by the convergence technology of mobile telematics and black-box. This emerging technology can be referred to as Black-box in Mobile (BIM). For the development of BIM, sensors and cameras were realized in a driving robot. Relevant hardware implementation was achieved to verify the functionality of BIM. The transmitted signal from the driving robot was confirmed in an Android-based portable device. Existing Black-boxes were mostly developed by major transportation companies and focused only on storing data. The proposed BIM offers not only data storage but also easy-to-use real-time monitoring while in motion. In addition, the vehicle can be monitored on parking through shock sensors. This development is considered commercially viable as it is achieved via software implementation.

A study on stand-alone autonomous mobile robot using mono camera (단일 카메라를 사용한 독립형 자율이동로봇 개발)

  • 정성보;이경복;장동식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.56-63
    • /
    • 2003
  • This paper introduces a vision based autonomous mini mobile robot that is an approach to produce real autonomous vehicle. Previous autonomous vehicles are dependent on PC, because of complexity of designing hardware, difficulty of installation and abundant calculations. In this paper, we present an autonomous motile robot system that has abilities of accurate steering, quick movement in high speed and intelligent recognition as a stand-alone system using a mono camera. The proposed system has been implemented on mini track of which width is 25~30cm, and length is about 200cm. Test robot can run at average 32.9km/h speed on straight lane and average 22.3km/h speed on curved lane with 30~40m radius. This system provides a model of autonomous mobile robot adapted a lane recognition algorithm in odor to make real autonomous vehicle easily.

  • PDF

A Robotcar-based Proof of Concept Model System for Dilemma Zone Decision Support Service (딜레마구간 의사결정 지원 서비스를 위한 로봇카 기반의 개념검증 모형 시스템)

  • Lee, Hyukjoon;Chung, Young-Uk;Lee, Hyungkeun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.4
    • /
    • pp.57-62
    • /
    • 2014
  • Recently, research activities to develop services for providing safety information to the drivers in fast moving vehicles based on various wireless network technologies such as DSRC (Dedicated Short Range Communication), IEEE 802.11p WAVE (Wireless Access for Vehicular Environment) are widely being carried out. This paper presents a proof-of-concept model based on a robot-car for Dilemma Zone Decision Assistant Service using the wireless LAN technology. The proposed model system consists of a robot-car based on an embedded Linux OS equipped with a WiFi interface and an on-board unit emulator, an Android-based remote controller to model a human driver interface, a laptop computer to run a model traffic signal controller and signal lights, and a WiFi access point to model a road-side unit.

Implementation and Evaluation of a Robot Operating System-based Virtual Lidar Driver (로봇운영체제 기반의 가상 라이다 드라이버 구현 및 평가)

  • Hwang, Inho;Kim, Kanghee
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.10
    • /
    • pp.588-593
    • /
    • 2017
  • In this paper, we propose a LiDAR driver that virtualizes multiple inexpensive LiDARs (Light Detection and Ranging) with a smaller number of scan channels on an autonomous vehicle to replace a single expensive LiDAR with a larger number of scan channels. As a result, existing SLAM (Simultaneous Localization And Mapping) algorithms can be used with no modifications developed assuming a single LiDAR. In the paper, the proposed driver was implemented on the Robot Operating System and was evaluated with an existing SLAM algorithm. The results show that the proposed driver, combined with a filter to control the density of points in a 3D map, is compatible with the existing algorithm.

3D Terrain Reconstruction Using 2D Laser Range Finder and Camera Based on Cubic Grid for UGV Navigation (무인 차량의 자율 주행을 위한 2차원 레이저 거리 센서와 카메라를 이용한 입방형 격자 기반의 3차원 지형형상 복원)

  • Joung, Ji-Hoon;An, Kwang-Ho;Kang, Jung-Won;Kim, Woo-Hyun;Chung, Myung-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.26-34
    • /
    • 2008
  • The information of traversability and path planning is essential for UGV(Unmanned Ground Vehicle) navigation. Such information can be obtained by analyzing 3D terrain. In this paper, we present the method of 3D terrain modeling with color information from a camera, precise distance information from a 2D Laser Range Finder(LRF) and wheel encoder information from mobile robot with less data. And also we present the method of 3B terrain modeling with the information from GPS/IMU and 2D LRF with less data. To fuse the color information from camera and distance information from 2D LRF, we obtain extrinsic parameters between a camera and LRF using planar pattern. We set up such a fused system on a mobile robot and make an experiment on indoor environment. And we make an experiment on outdoor environment to reconstruction 3D terrain with 2D LRF and GPS/IMU(Inertial Measurement Unit). The obtained 3D terrain model is based on points and requires large amount of data. To reduce the amount of data, we use cubic grid-based model instead of point-based model.

Sensor Fusion Docking System of Drone and Ground Vehicles Using Image Object Detection (영상 객체 검출을 이용한 드론과 지상로봇의 센서 융합 도킹 시스템)

  • Beck, Jong-Hwan;Park, Hee-Su;Oh, Se-Ryeong;Shin, Ji-Hun;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.217-222
    • /
    • 2017
  • Recent studies for working robot in dangerous places have been carried out on large unmanned ground vehicles or 4-legged robots with the advantage of long working time, but it is difficult to apply in practical dangerous fields which require the real-time system with high locomotion and capability of delicate working. This research shows the collaborated docking system of drone and ground vehicles which combines image processing algorithm and laser sensors for effective detection of docking markers, and is finally capable of moving a long distance and doing very delicate works. We proposed the docking system of drone and ground vehicles with sensor fusion which also suggests two template matching methods appropriate for this application. The system showed 95% docking success rate in 50 docking attempts.

Design of the Moving Appliance for Disabled Persons Supporting Getting in the Car (휠체어 사용자의 차량탑승 지원을 위한 이동기구설계)

  • Oh, Keon-Tack;Kim, Ki-Sik;Jung, Jae-Hyun;Kim, Sung-Ki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.1211-1212
    • /
    • 2014
  • 본 논문에서는 차종에 관계없이 휴대가 가능하며 사용자가 휠체어에서 차량의 좌석으로 이동시키는 로봇팔을 설계하고 경제성과 이동성, 휴대용이성이라는 사용자요구를 충족할 것이다.

Analysis on ACO Algorithm for Searching Shortest Path (최단경로 탐색을 위한 ACO 알고리즘의 비교 분석)

  • Choi, Kyung-Mi;Park, Young-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.1354-1356
    • /
    • 2012
  • 최근 ITS(Intelligent Transportation Systems)의 개발과 함께 차량용 내비게이션의 사용이 급증하면서 경로탐색의 중요성이 더욱 가속화되고 있다. 현재 차량용 내비게이션은 멀티미디어 및 정보통신 기술의 결합과 함께 다양한 기능 및 정보를 사용자에게 제공하고 있으며 이러한 기능과 정보를 사용해서 목적지점까지의 최단경로를 탐색하는 것이 내비게이션 시스템의 핵심기능이다. 이러한 경로탐색 알고리즘은 교통시스템, 통신 네트워크, 운송 시스템은 물론 이동 로봇의 경로 설정 등 다양한 분야에 사용되고 있다. 개미 집단 최적화(Ant Colony Optimization, ACO) 알고리즘은 메타 휴리스틱 탐색 방법으로 그리디 탐색(Greedy Search)뿐만 아니라 긍정적 반응의 탐색을 사용한 모집단에 근거한 접근법으로 순환 판매원 문제(Traveling Salesman Problem, TSP)를 풀기 위해 처음으로 제안되었다. 본 논문에서는 개미 집단 최적화(ACO) 알고리즘이 기존의 경로 탐색 알고리즘으로 알려진 Dijkstra 보다 최단경로 탐색에 있어서 더 적합한 알고리즘이라는 것을 설명하고자 한다.

A Design and Implementation of the remote control system of vehicle using the G-sensor (G센서를 이용한 차량원격제어시스템 설계 및 구현)

  • Song, Jong-Gun;Kwon, Doo-Wy;Do, Kyeong-Hoon;Jang, Won-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.135-138
    • /
    • 2009
  • G-Sensor is being used for controlling motion of smart-phone and robot. G-Sensor can control motion to several direction, because it is composed of X, Y, and Z axis and also can be used on many mobile-phone by using Wi-Fi communication and RS-232C communication on the Bluetooth module. In this research, we suggest the application that realize and develop visual-vehicle-remote-control-system by using mobile-phone with G-Sensor so that drivers can more easily remote control and manage their vehicle with mobile-phone in real-time visual.

  • PDF

Decoupling Control of 2WS Cars Using Direct Yaw Moment (직접요오모멘트를 이용한 이륜조향차량의 비결합 제어기 설계)

  • Choi, Jae-Weon;Cho, Chung-Nae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.761-767
    • /
    • 2005
  • There exists a structural limit of 2WS cars that drivers would not like simultaneously to follow the desired path and attenuate moments resulting from disturbances because lateral acceleration and yaw rate are coupled inherently. In order to overcome the limit, the 4WS cars that have rear wheel steering as an additional input have been introduced. But the 4WS cars have disadvantages that much cost is required due to structural alteration, it is difficult to be used to the driving circumstances and tire performances are not efficient in nonlinear or large lateral acceleration ranges. Therefore, it is proposed that, in this paper, a robust controller is easy to apply to 2WS cars by using direct yaw moment, decouples lateral acceleration from yaw motion and is robust against disturbances and uncertainties of system parameters, and thus the proposed control method has the advantages of 4WS cars which can be achieved in 2WS cars.