• Title/Summary/Keyword: 로봇이동

Search Result 2,256, Processing Time 0.027 seconds

ICT Trend Analysis Based on Research Papers and Patents (논문 및 특허 기반의 ICT 동향 분석 연구)

  • Son, Yeonbin;Kim, Solha;Choi, Yerim
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.1-18
    • /
    • 2021
  • ICT is the main driving force of Korea's economic growth. Korea has the world's best ICT competitiveness, and several policies are being implemented to maintain it. However, for successful policy implementation, it is crucial to understand ICT trends accurately. Therefore, this study analyzes the trends of 18 core technologies in the ICT field. In particular, the degree of scientific development and commercialization by technology are investigated through research paper analysis and patent analysis, respectively. Then, the trends shown by document type are compared based on the two analysis results. As a result, artificial intelligence and virtual reality are at the stage where commercialization is actively taking place after scientific development, and at the same time, since research is being conducted, it is expected to develop continuously. On the other hand, quantum computer and implantable device are in the basic research stage. It is necessary to understand the current research status and determine the direction of future support. The results of the ICT trend analysis conducted in this study can be used as a criterion for determining the future direction of Korean policy.

Development of an Open-Typed Optimal Trolley Model for Cable-Based Retractable Membrane Roof (케이블 기반 개폐 막 지붕의 오픈형 최적 트롤리 모델 개발)

  • Lee, Donwoo;Shon, Sudeok;Choi, Bongyoung;Lee, Seungjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.719-727
    • /
    • 2021
  • In the field of architecture, retractable devices capable of responding flexibly to the environment have been applied widely to large structures. Among these devices, the aesthetically pleasing retractable membrane is lightweight so that the membrane can be opened easily using only a traction device. On the other hand, because the towed membrane moves as it is connected to the main cable by a trolley, the number of trolleys needed increases in proportion to the roof's area. This study proposes an optimal model for an open-type trolley (OTT), which is used widely in these devices, using topology optimization. The analysis used the ANSYS program. A new model was proposed based on the results and reviewed through the feedback. Through this process, it was possible to develop a prototype with increased durability and reduced weight. For OTT, optimization was performed based on static analysis and the boundary conditions, so three prototypes were designed. A comparison of the proposed trolley with the conventional one under the same conditions revealed an up to 71.04% decrease in volume while the yield-strength reached 8.67 to 11.43%. In conclusion, the optimal trolley proposed was found to be reliable in terms of economy and stability.

Current Trend of EV (Electric Vehicle) Waste Battery Diagnosis and Dismantling Technologies and a Suggestion for Future R&D Strategy with Environmental Friendliness (전기차 폐배터리 진단/해체 기술 동향 및 향후 친환경적 개발 전략)

  • Byun, Chaeeun;Seo, Jihyun;Lee, Min kyoung;Keiko, Yamada;Lee, Sang-hun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.3-11
    • /
    • 2022
  • Owing to the increasing demand for electric vehicles (EVs), appropriate management of their waste batteries is required urgently for scrapped vehicles or for addressing battery aging. With respect to technological developments, data-driven diagnosis of waste EV batteries and management technologies have drawn increasing attention. Moreover, robot-based automatic dismantling technologies, which are seemingly interesting, require industrial verifications and linkages with future battery-related database systems. Among these, it is critical to develop and disseminate various advanced battery diagnosis and assessment techniques to improve the efficiency and safety/environment of the recirculation of waste batteries. Incorporation of lithium-related chemical substances in the public pollutant release and transfer register (PRTR) database as well as in-depth risk assessment of gas emissions in waste EV battery combustion and their relevant fire safety are some of the necessary steps. Further research and development thus are needed for optimizing the lifecycle management of waste batteries from various aspects related to data-based diagnosis/classification/disassembly processes as well as reuse/recycling and final disposal. The idea here is that the data should contribute to clean design and manufacturing to reduce the environmental burden and facilitate reuse/recycling in future production of EV batteries. Such optimization should also consider the future technological and market trends.

Deep Learning-based Object Detection of Panels Door Open in Underground Utility Tunnel (딥러닝 기반 지하공동구 제어반 문열림 인식)

  • Gyunghwan Kim;Jieun Kim;Woosug Jung
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.665-672
    • /
    • 2023
  • Purpose: Underground utility tunnel is facility that is jointly house infrastructure such as electricity, water and gas in city, causing condensation problems due to lack of airflow. This paper aims to prevent electricity leakage fires caused by condensation by detecting whether the control panel door in the underground utility tunnel is open using a deep learning model. Method: YOLO, a deep learning object recognition model, is trained to recognize the opening and closing of the control panel door using video data taken by a robot patrolling the underground utility tunnel. To improve the recognition rate, image augmentation is used. Result: Among the image enhancement techniques, we compared the performance of the YOLO model trained using mosaic with that of the YOLO model without mosaic, and found that the mosaic technique performed better. The mAP for all classes were 0.994, which is high evaluation result. Conclusion: It was able to detect the control panel even when there were lights off or other objects in the underground cavity. This allows you to effectively manage the underground utility tunnel and prevent disasters.

Distortion of the Dose Profile in a Three-dimensional Moving Phantom to Simulate Tumor Motion during Image-guided Radiosurgery (방사선수술에서 종양 움직임을 재현시킨 움직이는 팬텀을 이용하여 선량 분포의 왜곡에 대한 연구)

  • Kim, Mi-Sook;Ha, Seong-Hwan;Lee, Dong-Han;Ji, Young-Hoon;Yoo, Seong-Yul;Cho, Chul-Koo;Yang, Kwang-Mo;Yoo, Hyung-Jun;Seo, Young-Seok;Park, Chan-Il;Kim, Il-Han;Ye, Seong-Jun;Park, Jae-Hong;Kim, Kum-Bae
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.268-277
    • /
    • 2007
  • Purpose: Respiratory motion is a considerable inhibiting factor for precise treatment with stereotactic radiosurgery using the CyberKnife (CK). In this study, we developed a moving phantom to simulate three-dimensional breathing movement and investigated the distortion of dose profiles between the use of a moving phantom and a static phantom. Materials and Methods: The phantom consisted of four pieces of polyethylene; two sheets of Gafchromic film were inserted for dosimetry. Treatment was planned to deliver 30 Gy to virtual tumors of 20, 30, 40, and 50 mm diameters using 104 beams and a single center mode. A specially designed robot produced three-dimensional motion in the right-left, anterior-posterior, and craniocaudal directions of 5, 10 and 20 mm, respectively. Using the optical density of the films as a function of dose, the dose profiles of both static and moving phantoms were measured. Results: The prescribed isodose to cover the virtual tumors on the static phantom were 80% for 20 mm, 84% for 30 mm, 83% for 40 mm and 80% for 50 mm tumors. However, to compensate for the respiratory motion, the minimum isodose levels to cover the moving target were 70% for the $30{\sim}50$ mm diameter tumors and 60% for a 20 mm tumor. For the 20 mm tumor, the gaps between the isodose curves for the static and moving phantoms were 3.2, 3.3, 3.5 and 1.1 mm for the cranial, caudal, right, and left direction, respectively. In the case of the 30 mm tumor, the gaps were 3.9, 4.2, 2.8, 0 mm, respectively. In the case of the 40 mm tumor, the gaps were 4.0, 4.8, 1.1, and 0 mm, respectively. In the case of the 50 mm diameter tumor, the gaps were 3.9, 3.9, 0 and 0 mm, respectively. Conclusion: For a tumor of a 20 mm diameter, the 80% isodose curve can be planned to cover the tumor; a 60% isodose curve will have to be chosen due to the tumor motion. The gap between these 80% and 60% curves is 5 mm. In tumors with diameters of 30, 40 and 50 mm, the whole tumor will be covered if an isodose curve of about 70% is selected, equivalent of placing a respiratory margin of below 5 mm. It was confirmed that during CK treatment for a moving tumor, the range of distortion produced by motion was less than the range of motion itself.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.