• Title/Summary/Keyword: 로봇경진대회

Search Result 57, Processing Time 0.021 seconds

Creating Adaptive Behaviors for Shooting Game Characters Behavior-based Artificial Intelligence (행동기반 AI를 이용한 슈팅게임 캐릭터의 적응형 행동생성)

  • 구자민;홍진혁;조성배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.89-92
    • /
    • 2004
  • 로보코드는 사용자가 직접 제작할 수 있는 슈팅게임 환경으로서, 이를 이용한 경진대회가 개최되고 있다. 매우 다양한 작전을 구사하는 로봇들이 인터넷을 통해 공개되지만, 대부분의 전략은 사람이 직접 설계하여 행동이 단순하고, 변화하는 환경에 따라 행동을 구사하는데에 어려움을 가지고 있다. 이로 인해 아무리 훌륭한 전략을 가지고 있더라도 환경적 요소에 따라 예상치 못한 이벤트가 발생했을 경우 적절한 행동을 선택하여 행하기가 어렵다. 본 논문에서는 동적인 환경에서 적절한 행동을 선택하는 행동선택 네트워크를 이용하여 상대 전략에 따라 적절한 행동을 선택하는 방법을 제안하고 로보코드에 적용하여 실험하였다. 실험결과, 상대 탱크의 전략에 따라 다양한 행동들을 자동으로 선택하였으며, 경기 결과로 그 전략의 우수성이 입증되었다.

  • PDF

A Study on the Obstacle Avoidance Algorithm and Path Planning of Multiple Mobile Robot (다중이동로봇의 장애물 회피 논리 및 경로계획에 관한 연구)

  • Park, Kyung-Jin;Lee, Ki-Sung;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.633-635
    • /
    • 1999
  • In this paper, we propose a new method of path planning for multiple mobile robot in dynamic environment. To search the optimal path, multiple mobile robot is always generating path with static and dynamic obstacles avoidance from start point to goal point. The purpose of this paper is to design an optimal path for the mobile robot.

  • PDF

The Mobile Robot For Vision-Based Navigation In a Corridor (건물 복도의 비전기반로봇 주행)

  • Bae, Sung-Hoon;Choi, Kyung-Jin;Lee, Young-Hyun;Park, Chong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.154-158
    • /
    • 2002
  • This paper describes a path tracking method for vision-based and autonomous mobile robot in a corridor. At first, we extract the ceiling-lamp of the corridor through simple preprocessing (gray, thresholding, labeling, etc.) for robot position and orientation. Then, we design the controller for path-tracking. Simulations conducted, and acceptable vehicle localization results were obtained to prove the feasibility of the proposed approach.

  • PDF

얀센 메커니즘 기반의 라인트레이싱 로봇 설계

  • Gang, Nam-Gyu;Lee, Su-Hong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.528-532
    • /
    • 2017
  • The Theo Jansen mechanism using 1 degree of freedom is special system of walking robot. The trajectory made by the point of ground position is similar to other walking robot using many degrees of freedom. Because of diversity of design parameter of the Jansen mechanism, it makes a lot of trajectory and takes possibilities of optimization. However this research doesn't focus on the optimization of trajectory, but it focused on comprehensive design of the robot using well-known trajectory and line tracer logic to go fast and accurate along the line. The logic to follow a line has many kinds of possibility of algorithm. To eliminate uncertainty about recognizing a line, I divide the case of line following situation and make optimized logic.

  • PDF

최적 보행 동작 구현을 위한 시뮬레이션 기반 Jansen Mechanism 활용 보행 로봇 설계 및 구현

  • Kim, Seung-Ha;Lee, Su-Hong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.534-538
    • /
    • 2017
  • There are three types of robots that move on the ground classified as drivetrain. Wheels, tracks and Legs. Wheels and tracks are much easier to construct and control, but they have problems passing through obstacles like people. This paper discusses the design of line tracing using Theo Jansen, one of multi-legged walking mechanism. In order to increase the moving speed, the Jansen mechanism is designed by maximizing the objective variable as GL (Ground Length), GAC (Ground Angle Coefficient). In this project, only three sensors were attached and Arduino was used for optimal control of the motor using the sensor values.

  • PDF

Optimal design of an automatic walking robot based on Jansen's Mechanism (얀센 메커니즘을 이용한 자동주행 보행 로봇의 최적 설계)

  • Kim, Dong-Chan;Kim, Mu-Hwan;Lee, Min-Su;Park, Je-Yeol;Jo, Seong-Uk
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.540-546
    • /
    • 2017
  • Bipedal robots tend to have greater mobility than conventional treaded or wheeled robots yet they are commonly complicated by instabilities in balance. This paper presents a bipedal robot based upon Jansen's locomotive mechanism which addresses these challenges in stability and efficiency. In order to achieve a functioning robot, we considered a multitude of variables in its motion including, the Ground Score, Drag Score, step size, foot lift, stride, and instantaneous speed of the Jansen mechanism. Matlab and Jansen Opt solver were used to optimize the legs of the robot. A trial and error experimental method was used to determine the best combination of link lengths, and m.Sketch was used to model our results. Finally, we drew the entirety of the robot's figure by using the Edison design.

  • PDF

Jansen Mechanism을 기반으로 한 보행로봇의 최적화와 Line tracer

  • Do, Seung-Hun;Choe, Ju-Yeong;Kim, Min-Su;Park, Hyeon-Su;Kim, Dong-Hwi;Lee, Chun-Yeol
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.506-510
    • /
    • 2017
  • Based on the Jansen mechanism theory, a walking robot is developed, which is able to trace a line. In order to find the optimized legs, GL(Ground Length), GAC(Ground Angle Coefficient) and Grashof criteria are utilized in m.sketch program as well as EdisonDesign program. Many types of design are applied to sensors and controls, and the functionality is checked. Finally, a prototype line tracer robot is manufactured using aduino parts and smart boards. The prototype robot is test run to check the validity of the design, and modifications are applied to improve the performance according to each test result until the best design is achieved.

  • PDF

Simulation-based Jansen mechanism utilizing walking robot of the design and implementation in order to implement the best walking movement. (최적 보행 동작 구현을 위한 시뮬레이션 기반 Jansen Mechanism 활용 보행 로봇 설계 및 구현.)

  • Kim, Heechan;Kim, SeungHa
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.467-468
    • /
    • 2016
  • The importance of the recent manufacturing industry have been made to invest in a lot of assistance and human resource development at the national dimension in which to rise again. However Learned in actual school education kinetic, and the use to how product design structural knowledge, Often it feels vague unlikely whether it is possible to derive an optimal product. In this study, by using the simulation-based Jansen Mechanism designed a walking robot, after optimization of the numerical consideration when designing for optimum walking motion, through simulation through the actual production resulting numerical information is examined whether valid. In addition, through the actual production was walking robot, to verify the validity of the simulation-based design.

  • PDF

Design of optimized legged robots for safety structure using Jansen Mechanism and m.Sketch (Jansen Mechanism 과 m.Sketch 를 활용한 보행 로봇의 안전 최적 설계.)

  • Woo, Minhyuk
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.469-472
    • /
    • 2016
  • Jansen Mechanism has been a constant popularity by researchers studying legged robots because of many benefits. This paper proposed the design process of optimized legged robots using Jansen Mechanism and m.Sketch(Jansen Mechanism simulation software). First, driving part of legged robots is designed in compliance with the design regulations of a competitive exhibition. Second, setting the length of link and position of joint is conducted in keeping with the constraints. Third, Ground Length (GL) and Ground Angle Coefficient(GAC) values are extracted by m.Sketch simulation. Finally, by repeating the previous procedures, comparing the GL and GAC values, find the optimum input values. This.

  • PDF

Designing walking robot using Theo Jansen Mechanism (Theo Janson Mechanism 을 이용한 보행 로봇 설계)

  • Lee, Byeongcheol
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.411-416
    • /
    • 2016
  • Existing moving robots has several kinds of moving method; using wheel, jointed leg structure and so on. Wheel type can be operated by DC motor so it is simple and efficient. However, it is not appropriate to pass irregular terrain and obstacle. Leg structure type has an advantage in those cases. Generally, Leg structure is operated by several servo motors attached to each joint. It makes a robot heavier and more complicate due to increase of the degree of freedom. However, by using Theo Jansen Mechanism, one (or more) leg have only single-degree of freedom and can be operated by only one DC motor. So leg structure using Theo Jansen Mechanism will be good choice if robots have to be mass-produced. This paper describes the following a walking robot designed and produced based on Theo Jansen Mechanism, simulating process of Theo Jansen leg structure using Edison m.Sketch and how to solve several of discovered problem of the robot.

  • PDF