• Title/Summary/Keyword: 로랑분해

Search Result 3,891, Processing Time 0.026 seconds

Enzymatic Preparation and Antioxidant Activities of Protein Hydrolysates from Protaetia brevitarsis Larvae (흰점박이꽃무지 유충 단백가수분해물의 제조 및 항산화 활성)

  • Lee, Hyo-Seon;Ryu, Hee-Jeong;Song, Hyeon-Ji;Lee, Syng-Ook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1164-1170
    • /
    • 2017
  • Protaetia brevitarsis larvae (PBL) has recently been registered as a temporary food in Korea, and this study evaluated the application potential of PBL proteins as health functional food materials. Protein hydrolysates were prepared from PBL powder by enzymatic hydrolysis using five different proteases (alcalase, bromelain, flavourzyme, neutrase, and papain), and based on the results from the peptide content and SDS-PAGE analyses, PBL treated with alcalase or flavourzyme showed a high degree of hydrolysis (HD) value, whereas the HD value of those treated with neutrase, bromelain, or papain was minimal. The protein hydrolysates showing a high HD value were separated further into the fractions of >3 kDa and <3 kDa by a centrifugal filter system and then lyophilized, and according to the $RC_{50}$ values of the protein hydrolysates (<3 kDa) obtained from three different antioxidant analyses; the alcalase hydrolysates showed the highest antioxidant activity. Therefore, the alcalase hydrolysates were tested further for their inhibitory effects on the peroxidation of linoleic acid by measuring the thiobarbituric acid values. The results showed that the peroxidation of untreated linoleic acid increased dramatically during 6 days of incubation, but a pretreatment with the hydrolysates ($100{\sim}800{\mu}g/mL$) significantly inhibited the linoleic acid peroxidation in a dose-dependent manner for 6 days. Our current studies are focused on the identification of active peptide sequences from alcalase hydrolysates.

Seasonal Variation of Contribution of Leaf-Litter Decomposition Rate in Soil Respiration in Temperate Deciduous Forest (토양호흡의 계절적 변이에 기여하는 리터의 분해속도)

  • Suh Sang-Uk;Min Youn-Kyung;Lee Jae-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • In a forest ecosystem, the major source of soil carbon input is from litterfall and its decomposition. To understand the effect of litterfall and litter decomposition on seasonal variation of soil respiration and litter decomposition rates were measured in temperate deciduous forest in Korea. Annual litterfall collected from litter trap (1m x 1m) were 147.5 ± 8.2g Cm/sup -2/ yr/sup -1/ in 2003. About 47% of litterfall were Quercus serrata leaf followed by Carpinus laxiflora leaf (27 %), Carpinus cordata leaf (7 %), and others, such as other leaf, bark, branch, and acorn, were 20%. The decomposition rate was the highest in C. cordata (33.03%, k = 0.46), followed by C. laxiflora (25.73%, k = 0.30), and Q. serrata (24.17%, k = 0.28). The continuous measurement of soil respiration from January 2004 to December 2004 was carried out using AOCC (Automatic Open-Closed multi-Chamber system). The annual soil respiration rate was 629.6g Cm/sup -2/ yr/sup -1/ and the litter decomposition was 30.0g Cm/sup -2/ yr/sup -1/. The portion of litter decomposition rate on soil respiration rate was about 5%. From January to February, when the soil respiration rate was the lowest, about 11 % of soil respiration (7.4 ± l.4g Cm/sup -2/ month/sup -1/) were effected by litter decomposition rate (0.8g Cm/sup -2/ month/sup -1/). The highest soil respiration rate (111.5 ± 16.2g Cm/sup -2/ month/sup -1/) and litter decomposition rate (11.4g Cm/sup -2/ month/sup -1/) were showed in July to August. According to the regression analysis between soil respiration rate and litter decomposition, the soil respiration rate were related to litter decomposition with the correlations (r = 0.63).

Separation of Wood Components by Acetone (아세톤에 의한 목재 조성분의 분리)

  • Song, Byung-Hee;Ahn, Byoung-Jun;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.230-241
    • /
    • 2010
  • The purpose of this study was to seek the optimum condition for effective separation of the chemical constituents of wood biomass by means of hydrolysis of acetone solution in presence of acid salt as a catalyst. Out of diverse acid salts the catalytic effect of aluminum sulfate ($Al_2(SO_4)_3$) was the most excellent during the hydrolysis of wood biomass in the acetone solution and the optimum concentration was 0.01 M (6.3 wt%). In the condition of mixture ratio of acetone and water to 9 : 1 as well as optimum concentration of aluminum sulfate two wood biomass species, oak wood (Quercus mongolica Fischer) and Pine wood (Pinus densiflora Sieb. et Zucc.), was hydrolyzed for 45 minutes at $200^{\circ}C$ and the degree of hydrolysis was determined to 92.7% and 92.4%, respectively. Extending the reaction time to 60 minutes in the mixture ratio of acetone and water to 8 : 2 the degree of hydrolysis of oak wood was also ca. 92.7%. In the case of Pinus, however, the similar hydrolysis ratio was obtained at $210^{\circ}C$. As the temperature and hydrolysis time increased, the quantitative amount of lignin recovered from the hydrolysate clearly increased, whereas the total amount of carbohydrates in the hydrolysate decreased rapidly. Considering the recoverable amount of lignin and carbohydrate in the hydrolysate, the best condition for the hydrolysis of wood biomasses were confirmed to the mixture ratio of acetone and water to 8 : 2, the concentration of aluminum sulfate of 6.3 wt%, hydrolysis temperature of $190^{\circ}C$ for 60 minutes. In this condition the total amounts of carbohydrate in the hydrolysates of oak wood and pine wood were estimated to 47.6% and 51.4%, respectively. The amount of lignin recovered from the hydrolysates were ca. 18.2% for oak wood and 13.7% for pine wood.

Characterization of Chemical Composition and Thermal Behavior of Biomass Originated from Tobacco Industry (담배산업유래 바이오매스의 화학성분 및 열분해 특성 평가)

  • Sung, Yong Joo;Seo, Yung Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.138-146
    • /
    • 2008
  • The chemical compositions, cell wall biopolymers and non-isothermal behavior of the stem biomass of Nicotiana Tabacum originated from tobacco industry were investigated in depth. On a weight basis, the contents of total ash and total sugar are 19.1% and 20.7% respectively. Lignin content was around 3% of tobacco stem biomass while pectin was over 7%. The holo-cellulose content in cell wall biopolymer was around 13% and the $\alpha$-cellulose constitutes 60% of the total holo-cellulose. The thermal behavior of stem biomass showed different patterns depending on either inert (nitrogen) or oxidizing (air) atmospheric condition. In the air atmosphere, the rapid thermal decompositions at around $473^{\circ}C$ and $581^{\circ}C$ were recorded as the peaks in DTG curve, while the peaks were not shown in the nitrogen atmosphere condition. The thermal analysis of the freeze dried soluble obtained from hot water extraction of tobacco stem biomass showed that the rapid thermal decomposition at around $581^{\circ}C$ in the air atmosphere was due to the residual char originated from the soluble fraction. The distinct difference in thermal decomposition between hemicellulose and cellulose were easily found in the DTG curve obtained in the nitrogen atmosphere.

Isolation and Identification of Degradation products of Herbicide Propanil in Solution (제초제(除草劑) Propanil의 용액중(溶液中) 분해산물(分解産物)의 분리(分離) 및 동정(同定))

  • Kim, Jang Eok;Shin, Yun Gyo;Hong, Jong Uck
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.27-32
    • /
    • 1987
  • To isolate and identify degradation products of propanil in solution which propanil concentration was 2000ppm with a certain temperature, degradation products and pathway were investigated every 2 weeks for 12 weeks. Extracted mixture was developed with benzene on TLC plate, and Rf values of isolated DCA and TCAB were 0.65 and 0.94 respectively. At the GC analysis, propanil and its degradation products could seperate at the column temperature $200^{\circ}C$, but in order to more good resolution, the column temperature of DCA and TCAB was $140^{\circ}C$ and $250^{\circ}C$ respectively. Functional group of OCA was determined by IR spectrum $3400cm^{-1}$ and $800cm^{-1}$. Proton peaks of OCA were NMR spectrum $6.7{\delta}$ and $3.7{\delta}$. As the results, the major degradation products of propanil in solution were seperated on TLC plate, and thus identified by the analysis of GC, IR and NMR. Proposed degradation pathway of propanil in solution was from DCA to TCAB.

  • PDF

A study on removal effect of Endosulfan in soil and aquatic system (수질 및 토양 중 Endosulfan 제거효과에 관한 연구)

  • An, Jung-Hyeok;Lee, Seog-Jong;Lee, Woan;Kim, Joon-Bum;Lee, Gwang-Chun;Kwon, Young-Du;Jeon, Choong;Park, Kwang-Ha
    • Analytical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.155-162
    • /
    • 2006
  • In this study, a series of experiments were conducted using a standard solution containing ${\alpha}$ and ${\beta}$-endosulfan to follow the removal effect of residual pesticides on soil and aqueous solution. An analytical method for residual pesticides was established by a gas chromatography equipped Ultra II[$(30m{\times}0.25mm(ID){\times}0.25{\mu}m$] capillary column and a ${\mu}$-electron capture detector(${\mu}$-ECD). Recovery rates of residual pesticides for soil samples were 96-100%. The amount of ${\alpha}$ and ${\beta}$-endosulfan that was spread in the soil was checked for various period of time. It indicated that the amount was reduced to 73 and 61%, respectively. When the water spread amount increased from 10 to 100 mL, ${\alpha}$-endosulfan was eliminated from 45 to 85% and while ${\beta}$-endosulfan from 44 to 88%. Removal rates of ${\alpha}$-endosulfan and ${\beta}$-endosulfan were 99% and 98% respectively within 30 minutes. It was assumed that the organic salts and strong alkali elements contained in the pesticide degradator hydrolyzed the residual pesticide.

Valuation of Molecular Weight Distribution Charteristics of Soluble Microbial Products(SMP) Using the Batch Filtration Test (회분여과 방식을 통한 생물대사산물의 분자량 분포 특성 평가)

  • 정태영;차기철;이영무;한상국
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • The formation of soluble microbial products(SMP) and molecular weight distribution on loading rate were observed in batch-type culture medium, which phenol was fed as a substrate. The molecular weight destribution was obtained by using 30K, 100K dalton and $0.45{\mu}$ membrane filters. When the phenol concentrationas a substrate was 120, 230 and 440 mg/L , the specific substrate utilization rate(q) showed 0.639, 1.281 and 1.744 mgTOC/mgMLSS/day, respectively. The endogenous biomass decay rate constant($K_d$) at each substrate concentration was 0.00536, 0.0661 and 0.0749($day^1$), respectively. The $SMP_e$ product rate constant($k_{SMP}_ e$) showed 0.006, 0.0058 and 0.0057($day^1$), respectively. The initial influent substrate during the course of time degraded and produced $SMP_s$. The $SMP_s$ was converted to the $SMP_{nd}$ and endogenous phase converted to the $SMP_e$ ingredients. The molecula weight distribution on loading rate was converted to a higher MW during the course of time.

Identification and Characterization of Diesel Degrading Bacteria Isolated from Soil Artificially Contaminated with Diesel Oil (인공오염토양에서 분리한 디젤분해세균의 동정 및 특성)

  • Lee, Su-Jin;Song, In-Geun;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.148-156
    • /
    • 2006
  • Potential hydrocarbon degrading bacteria were screened from the site artificially polluted with 20,000 ppm of diesel. Among the isolates, two strains, SJD2 and SJD4, showed higher activities to degrade diesel on the Bushnell-Hass broth medium containing 2% of diesel. 16S rDNA sequence analysis revealed that SJD2 and SJD4 were Bacillus fusifomis and B. cereus, respectively. Both strains were found to grow in a wide range of temperature between $20^{\circ}C-55^{\circ}C$, with the best at $30^{\circ}C-37^{\circ}C$. This is the first report, as far as we know, that B. fusifomis is capable of degrading diesel. We hope that a new isolate, B. fusifomis, will efficiently conduct bioremediation at the contaminated sites with petroleum hydrocarbons.

  • PDF

Characterization of Diesel Oil-Degrading Bacteria (디젤유 분해균주의 특성 및 토양배양)

  • 안민정;한윤전;임현섭;최기현;권오범;정병철
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.108-113
    • /
    • 2003
  • Diesel oil-degrading bacterial strains were isolated from diesel oil contaminated soil and called HS series (HS1, HS2 and HS3). These strains were identified as Acinetobacter sp. (HS1) and Pseudomonas sp. (HS2 and HS3) based on Biolog test, cellular fatty acid composition, and 16S rDNA sequence analysis. These strains were coltivated in liquid minimal media containing 2% diesel oil, and diesel oil-degrading activity was measured. As result, all strains degraded over 70% of total diesel oil. But PAH (polycyclic aromatic hydrocarbon)- and pris- tane-degrading rate of these strain was below 20% of total PAH and pristane. The HS 1 strain showed highest hydrophobicity and low emulsifying activity among the experimental strains and high diesel oil-degrading activity. From the above-mentioned result, microcosm experiment was performed with the HS1 strain. The HS1 strain showed a degrading activity of over 80% of total diesel oil in microcosm test. And microbial activity was correlated to diesel oil-degrading activity. Therefore, it is suggested that the HS1 strains could be effectively used for the bioremediation for diesel oil.

Influences of Proteolytic Ability of Lactic Acid Bacteria on Acid Production and Precipitates Occurrence in Liquid Yogurt Preparation (액상발효유 제조시 유산균 Starter의 단백질 분해능이 산생성 및 침전발생에 미치는 영향)

  • 소명환
    • Microbiology and Biotechnology Letters
    • /
    • v.12 no.4
    • /
    • pp.285-291
    • /
    • 1984
  • In making liquid yoghurt, the influences of proteolytic ability of lactic acid bacteria on acid production and on protein stability were investigated. L. bulgaricus CH-2, L. helviticus IAM 1042 and L. jugurti 3048 showed a comparatively high proteolytic activity in milk, while L. casei YIT 9018 did not show any marked proteolysis. Starter organisms having high proteolytic ability showed more rapid growth and acid production than those having low ability in milk. The most active proteolysis occurred during logarithmic growth phase of yogurt organisms, and most of the proteolysis took place in the first 24-48 hrs of incubation. Highly proteolysed yogurts made by L. bulgaricus CH-2, L. jugurti 3048, L. helviticus IAM 1042, L. acidophilus L-54 and L. casei 3012 had low protein solubility at pH 3.5 and had much protein precipitates during storage of product, but those having little protein hydrolysates made by L. casei YIT 9018 or artificial acidification showed no precipitation during keeping.

  • PDF