• Title/Summary/Keyword: 로듐(III)

Search Result 6, Processing Time 0.021 seconds

Separation of Platinum(IV) and Rhodium(III) from Acidic Chloride Solution by Solvent Extraction with Tri 2-Ethylhexyl Amine(TEHA) (염산용액(鹽酸溶液)에서 Tri 2-Ethylhexyl Amine(TEHA)에 의한 백금과 로듐의 분리(分離))

  • Sun, Pan-Pan;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.29-34
    • /
    • 2013
  • Solvent extraction experiments were performed to separate platinum and rhodium from mixed chloride solution by using tri 2-ethylhexyl amine (TEHA) and its mixture with TBP and LIX 63. Effects of extraction conditions on the separation of the two metals were investigated as a function of extractant concentration in the HCl concentration range from 1 to 9 M. The concentration of Pt (IV) and Rh(III) was controlled to $1{\times}10^{-3}M$ and $2{\times}10^{-4}M$, respectively. In the extraction with TEHA and its mixture, Pt was quantitatively extracted irrespective of HCl concentration, while the extraction percentage of Rh depended on the extraction condition. When the concentration of HCl in the mixed solution was low, the extraction of Rh was nil and separation of Pt and Rh was possible. Adding TBP to TEHA had little effect on the extraction of both metals, while adding LIX63 to TEHA favored the extraction of Rh.

Ionic Equilibria of Pt(IV), Pd(II) and Rh(III) in Hydrochloric Acid Solution (염산용액(鹽酸溶液)에서 白金(IV), 팔라듐(II)과 로듐(III)의 이온평형(平衡))

  • Lee, Man-Seung;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2009
  • Distribution diagram of Pt(IV), Pd(II), and Rh(III) in HCl solution was obtained as a function of HCl concentration from 0.001 to 10 M by considering complex formation reaction together with mass balance. When HCl concentration was higher than 0.1 M, most of Pt and Pd in HCl solution exist as $PtCl_6^{2-}$ and $PtCl_4^{2-}$. The concentration of HCl had a feat effect on the speciation of Rh(III). As HCl concentration increases from 0.1 to 10 M, the pedominant species changes from $PhCl_5^{2-}$ to $PhCl_6^{3-}$. Interaction parameters of $PtCl_6^{2-}$ and $PdCl_4^{2-}$ with hydrogen ion were evaluated from the solvent extraction data of Pt and Pd reported in the literature.

Solvent Extraction for the Separation of Pd(II), Pt(IV), Ir(IV) and Rh(III) from 3 M Hydrochloric Acid Solution (3 M의 염산용액에서 팔라듐(II), 백금(IV), 이리듐(IV) 및 로듐(III)의 분리를 위한 용매추출)

  • Nguyen, Thi Hong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.26-31
    • /
    • 2017
  • LIX 63 showed a selectivity for the extraction of Pd(II) over other PGMs, such as Pt(IV), Ir(IV) and Rh(III) from 6 M HCl solution. Moreover, HCl solution has significant effect on the oxidation-reduction reaction between Ir(IV) and LIX 63. Therefore, the applicability of employing LIX 63 for the separation of the 4 PGMs was investigated from 3 M HCl solution. From 3 M HCl solution, only Pd(II) was selectively extracted by LIX 63 and its extraction percentage was higher than from 6 M HCl solution. Extraction of the Pd(II) free raffinate with TBP led to the selective extraction of Pt(IV). After oxidation of Ir(III) with $NaClO_3$ to Ir(IV), extraction of the Pt(IV) free raffinate with Aliquat 336 selectively extracted Ir(IV). For each extraction step, optimum stripping conditions were obtained. By this process, it was possible to separate the 4 PGMs by solvent extraction from 3 M HCl solution.

Synthesis, ESR and Electrochemical Characterization of Dioxygen Binding to Dirhodium Complexes with 2-anilinopyridinato Bridging Ligand (2-아닐리노 피리딘을 배위자로 하는 이핵 로듐착물의 두 산소첨가 생성물에 대한 합성 및 전기화학적 성질)

  • Kwang Ha Park;Moo Jin Jun;John. L. Bear
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.633-643
    • /
    • 1989
  • The R$Rh_2(ap)_4$(2,2-trans) isomer (ap = 2-anilinopyridinate), which has two anilino nitrogens and two pyridyl nitrogens bound to each rhodium ion trans to their own kind, shows activation towards the one electron reduction of dioxygen at -0.40 V vs SCE. The ESR spectrum taken at 123 K proves the formation of a $[Rh_2(ap)_4(O_2)]$ ion with oxygen axially bound to one rhodium ion and the complex is at a RhⅡ2 oxidation state. The complex will form [$Rh_2(ap)_4(O_2)(CH_3CN)]^-$ in presence of $CH_3CN/CH_2Cl_2$ mixture without breaking the Rh-$O_2^-$ bond. When oxidized at -0.25 and 0.55 V, $[Rh_2(ap)_4(O_2)]$ will undergo two one electron oxidations to form $Rh_2(ap)_4(O_2)[Rh_2(ap)_4(O_2)]^+$. Both species have an axially bound superoxide ion but the former is at $Rh^{II}Rh^{III }$and the later at $Rh^{III}_2$ oxidation states. The ESR spetra and $CH_3CN$ addition study, on the other hand, show that the later complex is better described as $[Rh_{II}Rh^{III}(ap)_4(O_2)]^+$ with the odd electron localized on rhodium ion and the complex has an axially coordinated molecular oxygen. The electrochemical and ESR studies also show that the degree of dioxygen activation is a function of electrochemical redox potential.

  • PDF

Solvent Extraction of Rhodium(III) and Iridium(IV) from Hydrochloric Acid Solution (염산용액에서 로듐(III)과 이리듐(IV)의 용매추출)

  • Lee, Maseung;Lee, Jinyoung;Sun, Panpan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.430-435
    • /
    • 2010
  • Solvent extraction experiments of Rh(III) and Ir(IV) were performed on the HCl solution by using Alamine336 and TBP. The extraction percentage of Rh and Ir by Alamine336 was much higher than that by TBP. For the solvent extraction with Alamine336, the extraction percentage of Rh and Ir decreased with a HCl concentration. However, the extraction percentage of both metals by TBP was below 12% in our experimental range and increased with an increasing HCl concentration of up to 8 M. From the mixed solution of Ir with an excess SnCl$_{2}$, most of the tin was extracted by Alamine336 and TBP. However, the extraction percentage of Ir by Alamine336 was reduced and no iridium was extracted by TBP. The extraction behavior of Ir and Sn was investigated by scrubbing experiments on the loaded Ir with a SnCl$_{2}$ solution.

Conversion of Coordinated Sulfur Atom into Sulfoxide Group via Oxidation Reaction of Metal Complexes of Tetradentates and Sulfur Amino Acids (네자리 리간드-황아미노산 금속착물의 산화반응에 의한 배위된 황원자의 sulfoxide 원자단으로의 전환)

  • Sung Sil Lee;Peter Fu;Sung Rack Choi;Moo Jin Jun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.516-521
    • /
    • 1989
  • Reaction between the $N_2O_2-type$ tetradentate ligand, ethylenediamine-N,N'-di-S-${\alpha}$-isobutylacetic acid (SS-emiba) and $RhCl_3{\cdot}3H_2O$ has yielded ${\Delta}-s-cis-\;and\;{\wedge}-uns-cis-[Rh(SS-eniba)Cl_2]-$. ${\Delta}-s-cis-[Rh(SS-eniba)Cl_2]^-$ has been utilized to react with S-methyl-L-cystcine(Smc) to give ${\Delta}-s-cis-[Rh(SS-eniba(Smc)]^+$. The oxidation of ${\Delta}-s-cis-[Rh(SS-eniba(Smc)]^+$ using $H_2O_2$ has produced ${\Delta}-s-cis-[Rh(SS-eniba)(Smc-o)]^+$, in which the coordinated sulfur has been converted into the sulfoxide group. In a separate series of experiments the S-methyl-L-cysteine is oxidized by $H_2O_2$ to give S-methyl-L-cysteine sulfoxide, which is then coordinated to ${\Delta}-s-cis-[Rh(SS-eniba)Cl2]^-$ to make the standard complet of ${\Delta}-s-cis-[Rh(SS-eniba)(Sme-o)]+$ for comparison with the complex obtained from the oxidation of ${\Delta}-s-cis-[Rh(SS-eniba)(Smc)]^+\;by\;H_2O_2.$

  • PDF