• Title/Summary/Keyword: 로다민 비

Search Result 9, Processing Time 0.025 seconds

A study on Enhancement Effectiveness of Cyanoacrylate Fumed Fingermark by the Solvent of Rhodamine 6G (Rhodamine 6G 용매에 따른 CA 훈증 지문 증강 효과에 관한 연구)

  • Shim, Yea-Ra;Yu, Je-Seol
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.7
    • /
    • pp.294-302
    • /
    • 2017
  • In this study, latent fingermarks deposited in porous or non-porous surface was developed by cyanoacrylate fuming, and then the developed fingermark is enhanced by using Rhodamine 6G. Between water-based R6G and organic solvent-based R6G, author studied about which material have higher effectiveness in enhancing fingermark. In all seven types of surfaces depositing fingermark, water-based R6G have higher effectiveness in enhancing fingermark and lower surface coloring than organic solvent-based R6G. But because the surfaces found in crime scene have multicolor background and various quality, the additional study about various surfaces is needed.

Photocatalytic Decomposition of Rhodamine B over BiVO4 Doped with Samarium Ion (Sm 이온이 도핑된 BiVO4에서 로다민 B의 광촉매 분해 반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.146-151
    • /
    • 2021
  • Pure and Sm ion doped BiVO4 catalysts were synthesized using a conventional hydrothermal method and characterized by XRD, DRS, SEM, and PL. We also examined the activity of these materials on the photocatalytic decomposition of rhodamine B under visible light irradiation. The doping of Sm ion into BiVO4 catalyst changed the ms-BiVO4 crystal structure into the tz-BiVO4 crystal structure in the low synthesis temperature. Light absorption analysis using DRS showed that all the catalysts displayed strong absorption in the visible range of the electromagnetic spectrum regardless of Sm ion doping. In addition, an amorphous morphology was shown in the pure BiVO4 catalyst, but the morphology of the BiVO4 catalyst doped with Sm ion was changed into an ellipse shape and also the particle size decreased. In the photocatalytic decomposition of rhodamine B, Sm ion doped BiVO4 catalyst showed higher photocatalytic activity than the pure BiVO4 catalyst. In addition, the Sm3-BVO catalyst doped with 3% Sm ion showed the highest photocatalytic activity, as well as the highest formation rate of OH radicals (•OH) and the highest PL peak. This result suggests that the formation rate of OH radicals produced in the interface between the photocatalyst and water is well correlated with the photocatalytic activity.

Photocatalytic Degradation of Rhodamine B Using Cd0.5Zn0.5S/ZnO Photocatalysts under Visible Light Irradiation (가시광선하에서 Cd0.5Zn0.5S/ZnO 광촉매를 이용한 로다민 B의 광분해 반응)

  • Lee, Hyun Jung;Jin, Youngeup;Park, Seong Soo;Hong, Seong Soo;Lee, Gun Dae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.356-361
    • /
    • 2015
  • $Cd_{0.5}Zn_{0.5}S/ZnO$ composite photocatalysts were synthesized using the precipitation method and characterized by XRD, UV-vis DRS, PL and FE-SEM. Photocatalytic activities of the materials were evaluated by measuring the degradation of rhodamine B under visible light irradiation. Contrary to ZnO, $Cd_{0.5}Zn_{0.5}S/ZnO$ materials absorb visible light as well as UV and their absorption intensities in visible region increased with increasing the $Cd_{0.5}Zn_{0.5}S$ amount. The increment in the $Cd_{0.5}Zn_{0.5}S$ content in $Cd_{0.5}Zn_{0.5}S/ZnO$ also leads to reducing the particle size and consequently increasing the specific surface area. $Cd_{0.5}Zn_{0.5}S/ZnO$ materials with the larger $Cd_{0.5}Zn_{0.5}S$ content showed the higher activity in the photocatalytic degradation of rhodamine B under visible light irradiation. Therefore, the heterojunction effect between $Cd_{0.5}Zn_{0.5}S$ and ZnO as well as the adsorption capacity seems to give important contributions to the photocatalytic activity of the $Cd_{0.5}Zn_{0.5}S/ZnO$.

Determination of Efficient Operating Condition of UV/H2O2 Process Using the OH Radical Scavenging Factor (수산화라디칼 소모인자를 이용한 자외선/과산화수소공정의 효율적인 운전 조건도출)

  • Kim, Seonbaek;Kwon, Minhwan;Yoon, Yeojoon;Jung, Youmi;Hwang, Tae-Mun;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.534-541
    • /
    • 2014
  • This study investigated a method to determine an efficient operating condition for the $UV/H_2O_2$ process. The OH radical scavenging factor is the most important factor to predict the removal efficiency of the target compound and determine the operating condition of the $UV/H_2O_2$ process. To rapidly and simply measure the scavenging factor, Rhodamine B (RhB) was selected as a probe compound. Its reliability was verified by comparing it with a typical probe compound (para-chlorobenzoic acid, pCBA); the difference between RhB and pCBA was only 1.1%. In a prediction test for the removal of Ibuprofen, the RhB method also shows a high reliability with an error rate of about 5% between the experimental result and the model prediction using the measured scavenging factor. In the monitoring result, the scavenging factor in the influent water of the $UV/H_2O_2$ pilot plant was changed up to 200% for about 8 months, suggesting that the required UV dose could be increased about 1.7 times to achieve 90% caffeine removal. These results show the importance of the scavenging factor measurement in the $UV/H_2O_2$ process, and the operating condition could simply be determined from the scavenging factor, absorbance, and information pertaining to the target compound.

Effect of Inorganic Salts on Photocatalytic Degradation of Rhodamine B Using Sulfide Photocatalysts under Visible Light Irradiation (가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응에 대한 무기염의 영향)

  • Lee, Gun Dae;Jin, Youngeup;Park, Seong Soo;Hong, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.655-662
    • /
    • 2017
  • Sulfide photocatalysts, CdS and CdZnS, were synthesized using a simple precipitation method and their photocatalytic activities were evaluated by the degradation of rhodamine B under visible light irradiation. The effects of four inorganic salt additives, KCl, NaCl, $K_3PO_4$, and $Na_3PO_4$, on the photocatalytic reaction were examined and the role of $K^+$, $Na^+$, $Cl^-$ and $PO_4{^{3-}}$ ions during photocatalytic reaction was discussed. The added inorganic salts were shown to have a remarkable effect on the photocatalytic reaction. It was also found that the anions in inorganic salts have a much more profound effect on the reaction rate, as compared to the cations. Under the present experimental conditions, $PO_4{^{3-}}$ revealed a significant inhibitory effect on the degradation rate whereas $Cl^-$ enhanced the rate slightly. This work pointed out that the consideration of additive effects is needed in the photocatalytic reaction for wastewater treatment.

산화아연-다층 그래핀 양자점을 이용한 전기화학셀

  • Sim, Jae-Ho;Lee, Gyu-Seung;Go, Yo-Han;Yang, Hui-Yeon;Son, Dong-Ik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.321-321
    • /
    • 2016
  • 한경오염의 증가에 따라 광촉매 물질을 이용한 환경 정화의 필요성이 대두되고 있다 [1]. 광촉매와 전기화학셀은 빛을 이용하여 다른 에너지를 생산하는 능력을 가지고 있다. 이 전기화학셀의 성능향상을 위해서는 적절한 밴드갭을 이용한 광흡수의 증가, 전자재결합의 감소, 전기화학적 반응 표면의 증가가 필요하다. 산화 아연은 잘 알려진 n형 산화물 반도체로서 좋은 전기적 특성과 광촉매 성능으로 전기화학셀에 적합한 소재이다. 그러나 산화 아연은 액체 전해물질 상에서 안정성이 좋지 못하다 [2]. 이를 해결하기 위해 단층 그래핀 혹은 풀러렌(C60)을 이용하여 산화아연을 코팅하는 방법을 제안하였는데, 풀러렌을 사용 시 단층 그래핀에 비하여 전기화학셀의 전기화학적 반응은 높았으나 안정성은 더 떨어지는 모습을 보였다 [3]. 본 연구에서는 다층 그래핀을 이용하여 전기화학적 반응도 높고 안정성도 높은 산화아연-다층 그래핀 양자점의 합성 및 이를 이용한 전기화학셀 소자의 특성을 연구하였다. X선 회절법, 라만 분광법, 투과 전자 현미경, 광발광 분광기, 시간-분해성 광발광 분광기를 이용하여 산화아연-다층 그래핀 양자점의 특성을 분석하였고, 이를 이용하여 광양극을 제작하여 전기화학적 특성을 관측하였으며 로다민 B 염료를 이용한 분해 테스트를 통하여 광촉매 성능을 확인하였고 사이클 테스트를 통하여 안정성을 확인하였다.

  • PDF

The Synthesis of Bi2WO6 by Hydrothermal Process and Their Photocatalytic Activity (수열합성법에 의한 Bi2WO6의 합성 및 그들의 광촉매 활성)

  • Hong, Seong-Soo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.313-318
    • /
    • 2020
  • Bi2WO6 were successfully synthesized using EGME, GL, EG and water as solvents by a conventional hydrothermal method. They were characterized by XRD, DRS, BET and SEM and we also investigated the photocatalytic activity of these materials for the decomposition of Rhodamin B under visible light irradiation. The XRD results revealed the successful synthesis well-crystallized Bi2WO6 crystals with Aurivillius structure when EGME and EG are used as solvents. In addition, the well-crystallized Bi2WO6 crystals showed the flower-like structure. The Bi2WO6 catalysts prepared at 180 ℃ using EGME as a solvent showed the highest photocatalytic activity. The Bi2WO6 catalysts prepared at mole ratio of H2O/EGME more than 50% showed high photocatalytic activity.

A Study on Optical Properties of Nanocomposite Composed of Au Nanorods and Organic Dyes (금 나노막대와 유기 염료로 구성된 나노복합체의 광학특성 연구)

  • Kim, Ki-Se;Yoo, Seong Il;Sohn, Byeong-Hyeok
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.141-145
    • /
    • 2014
  • In this study, we studied optical properties on the layer-by-layer (LbL) assemblies consisting of Au nanorods and organic dyes. For this purpose, poly (allylamine hydrochloride), PAH and poly (styrene sulfonate), PSS were selected as ionic polymers and rhodamine B isothiocyanate (RB) was utilized as an organic dye based on its spectral overlap with plasmon band of Au nanorods. In the view point of assembling methods, RB was covalently attached to PAH, then, LbL structure of Au [PSS/PAH]2/PSS/PAH-RB was prepared by sequential coating of PAH, PSS, PAH-RB on Au nanorods. Since the prepared LbL assembly exhibits both plasmonic and fluorescent properties, we studied the mutual nanorod-dye properties by dissolving Au nanorods.

New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect (개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법)

  • Nguyen, Dinh Cung Tien;Cho, Kwang Youn;Oh, Won-Chun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.705-713
    • /
    • 2017
  • A novel material, $Bi_2WO_6-GO-TiO_2$ composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of $Bi_2WO_6$ and $TiO_2$ nanoparticles onto graphene sheets was achieved. The obtained $Bi_2WO_{6-GO-TiO2}$ composite photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), and X-ray photoelectron spectroscopy (XPS). The $Bi_2WO_6$ nanoparticle showed an irregular dark-square block nanoplate shape, while $TiO_2$ nanoparticles covered the surface of the graphene sheets with a quantum dot size. The degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution with different initial amount of catalysts was observed by UV spectrophotometry after measuring the decrease in the concentration. As a result, the $Bi_2WO_6-GO-TiO_2$ composite showed good decolorization activity with MB solution under visible light. The $Bi_2WO_6-GO-TiO_2$ composite is expected to become a new potential material for decolorization activity. Photocatalytic reactions with different photocatalysts were explained by the Langmuir-Hinshelwood model and a band theory.