We can see that two images of reflection are observed on the surface of a ophthalmic lens. These are the image reflected from front surface and back surface of lens, respectively. The reflective image shows to be affect by surface refractive power of front and back surface of lens. Total refractive power of lens is calculated by refractive power of front and back surface of lens. Accordingly, the ratio of image on the lens surface is able to measure refractive power of ophthalmic lens without helping of the lensmeter. The ratio of two reflective image measured on the lens surface is compared with the calculated ratio by the power measurement.
Purpose: In this study, the distribution and differences in refractive powers on trial case lenses were investigated. Methods: We measured refractive powers at optical center and periphery using 4 trial case lens sets. According to international standards, the distribution and uniformity in refractive powers were investigated. Results: The lens shapes were different in different kinds of trial case lenses and some of lenses were out of tolerance according international standards. In some cases, the power differences were found between front and back side as well as between optical center and peripheral regions and also the cylindrical power on spherical lens and spherical power on the cylindrical lens were measured. Conclusions: Trial case lens are used to assess the refractive error, therefore, more precise control of the manufacturing process for trial case lenses and more thorough quality control will be required to offer an accurate vision test. More careful attention in using trial case lens is also required.
Purpose: To evaluate the reliability of refractive power by comparing the marked refractive power in an automatic phoropter and actually measured spherical/cylindrical refractive power. Methods: Actual refractive power of minus spherical lens and cylindrical lens in an automatic phoropter was measured by a manual lensmeter and compared with the accuracy of marked refractive power. Furthermore, combined refractive power and spherical equivalent refractive power of two overlapped lenses were compared and evaluated with the refractive power of trial lens. Results: An error of 0.125 D and more against the marked degree was observed in 70.6% of spherical refractive power of spherical lens which is built in phoropter, and the higher error was shown with increasing refractive power. Single cylindrical refractive power of cylindrical lens is almost equivalent to the marked degree. Combined spherical refractive power was equivalent to spherical refractive power of single lens when spherical lens and cylindrical lens were overlapped in a phoropter. Thus, there was no change in spherical refractive power by lens overlapping. However, there was a great difference, which suggest the effect induced by overlapping between cylindrical refractive power and the marked degree when spherical lens and cylindrical lens were overlapped. Spherical equivalent refractive power measured by using a phoropter was lower than that estimated by trial glasses frame and marked degree. The difference was bigger with higher refractive power. Conclusions: When assessment of visual acuity is made by using an automatic phoropter for high myopes or myopic astigmatism, some difference against the marked degree may be produced and they may be overcorrected which suggests that improvement is required.
Choi, Jin-Yong;Park, Jae-Sung;Kim, So Ra;Park, Mijung
Journal of Korean Ophthalmic Optics Society
/
v.16
no.4
/
pp.383-390
/
2011
Purpose: The present study was conducted to investigate whether refractive powers of soft contact lenses were induced by the deposition of tear proteins when wearing soft contact lenses. Methods: The soft contact lenses (material: etafilcon A, hilafilcon A and comfilcon A) with refractive powers of -1.00 D, -3.00 D, -5.00 D and -7.00 D were incubated in artificial tear for 1 day, 3 days, 5 days, 7 days and 14 days, respectively. After incubation, their refractive powers were measured by wet cell method with an auto-lens meter and their protein deposited on the lenses was determined by the method of Lowry. Results: Among three types of soft contact lenses, the most protein deposition was detected in ionic etafilcon A lens material and significant change of its refractive power was manifested. In other words, refractive powers of etafilcon A lenses firstly decreased after 1 day incubation in artificial tear and then gradually increased with increasing incubation period again. The observed change in refractive powers of all diopters of etafilcon A material was beyond the scope of standard error and bigger in the lens with lower optical power. On the other hand, non-ionic hilafilcon A showed less protein deposition as much as about 20% in etafilacon A and statistically significant increase of refractive powers with increasing incubation period in artificial tear. The change in refractive power of hilafilcon A was also beyond the scope of the standard of error when incubating in artificial tear and greater in the lens with lower diopter. The least protein deposit was shown in silicone hydrogel lens material, comfilcon A as approximately 10% of it in etafilcon A, indicating less change in refractive power within the standard range of error. Conclusions: The large change of refractive powers that was beyond the scope of standard error by the deposition of tear proteins on soft contact lenses was differently detected depending on lens materials in the current study. Thus, the deposition of tear proteins induced by longer period of lens wearing may be one of the causes that induces blurred vision, suggesting that soft contact lens wearers with the amount of tear proteins may need to choose proper lens material.
Purpose: This research provided basic data for refraction by comparing the corrected diopter of trial lens and phoropter. Methods: We compared the corrected diopter of trial lens and phoropter, and analyzed statistical significance and relations of the spherical lens corrected diopter and cylindrical lens corrected diopter according to the types (trial lens and phoropter) of subjective refractive instruments. Also we analyzed statistical significance and relations between cylindrical lens corrected diopter at the astigmatism and the types (trial lens and phoropter) of subjective refractory instruments. Results: When we measured the corrected diopter of simple myopia, the mean value for corrected diopter was S-2.74D using the trial lens and S-2.65D using the phoropter. So the corrected diopter was 0.09D smaller when measured by phoropter. The degree of astigmatism was measured C-0.81D using the trial lens and C-0.77D using the phoropter which showed that the measured value was 0.04D smaller using the phoropter. On correlation analysis between the refractive instruments (trial lens and phoropter) and the corrected diopter, there was significant (p<0.01) strong correlation between refractory machine and corrected spherical diopter (r=0.996) and the correlation between refractory machine and corrected cylindrical diopter was r=0.986 and was also significant (p<0.01). Conclusions: The use of phoropter than trial lens was more desirable when performing refraction on high myopia (simple refractive error, high astigmatism), and when using trial lens, you should consider the vertex distance and the gap between overlapped lenses before prescription.
Purpose: The current study aimed to evaluate the reliability for the combined refractive power when a spherical lens and a cylindrical lens were overlapped in a trial frame. Methods: The refractive powers, central thickness and peripheral thickness of spherical trial lenses and cylindrical lenses with negative power were measured. The combined refractive power of the spherical and cylindrical lenses was measured by auto lens meter. Measurement was repeated by changing the insertion order, and their results were further compared with the calculated combined refractive power. Results: There was no correlation between the variation of central and peripheral thickness in trial lenses and that of the lens power. Among 79 trial lenses, 3 trial lenses wasn't met the international standard. The refractive power calculated by Gullstrand's formula that could compensate vertex distance had smaller difference with the estimated power when compared with that calculated by thin lens formula however, it was significantly different from the estimated power. The refractive powers were generally apparent regardless of the insertion order of a spherical lens and a cylindrical lens: thin lens formula > actual measurements > Gullstrand's formula. The error was only found in cylindrical power calculated by Gullstrand's formula when inserted a spherical lens inside and a cylindrical lens outside however, the error was found in both of cylindrical and spherical powers calculated by Gullstrand's formula when inserted as a opposite order. By comparing actual measurements of equivalent spherical power, the accuracy was higher and the possibility of over-correction was lower when inserted a spherical lens inside and a cylindrical lens outside. Conclusions: From the results, those were revealed that the combined refractive power is influenced by the factors other than the vertex distance and the refractive power varies in accordance with the insertion order of a spherical lens and a cylindrical lens. Thus, it can be suggested that the establishment of standard for these is neccesaty.
Purpose: To evaluate the changes of refractive power when worn soft contact lenses were temporarily removed. Methods: 91 soft contact lens wearers (15 males and 76 females; total 182 eyes) from 17 to 39 years of age (average: $24{\pm}4.8$ years) were participated. Objective and subjective refraction, and corneal radius were measured at 0, 30, 60 and 90 min after lens removal. The changes in refractive power were evaluated between measurements over time. The other parameters such as types of lenses, fitting and wearing conditions were also assessed. Results: Objective refraction, subjective refraction and corneal radius were significantly changed according to measured time (p<0.0001). A moderate myopic shifts was observed at the beginning (30 min after lens removal) and a slight myopic shift at the late of measurement (60 min to 90 min after lens removal). There are no significant differences between lens types, fitting states, wearing time, wearing days and sleeping time in the previous day. However, there was significant interaction in changes for corneal radius between measuring time and lens type (p=0.017), fitting state (p=0.019), and sleeping time prior to the test (p=0.010). Conclusions: Time to reach refractive and corneal radius stability after contact lens removal revealed at least more than 60 min, regardless of types of lenses, fitting and wearing conditions. Therefore, refraction for correction should be performed after waiting for more than that time as possible.
Purpose: This study is to evaluate reliability of geometrical optics properties of spectacle lenses by using ISO and the medical instrument standard of KFDA, which are being sold in Korea. Methods: We used samples of three hundred and ninety eight spectacle lenses of eight company in total. Refractive indices of each samples which were used in experiment were classified into three groups of medium index (1.55~1.56), high index (1.60~1.61) and extra high index (1.67). Results: Conformity of refractive power was 81.61% in total spectacle lenses. The results showed that thickness conformity 90%, appearance conformity 85.18%, size conformity 96.23% and optical center point conformity 99.50% in total. Conclusions: We found that they deviated from the permitting value in many spectacle lenses on refractive power. The results of errors on prism power, surface inspection and optical center point showed small values in total products. In experiment of lens size and thickness, the bulk of indication rates and conformities of samples deviated from the permitting errors.
Purpose: The purpose was to study the corneal refractive power changes associated with the wearing of everted silicone hydrogel soft lenses. Methods: The corneal refractive power and corneal astigmatism were measured using corneal topographer (CT-1000, Shin-nippon Co., Japan) for checking change of corneal refractive power and objective refractive error was measured by auto-refractometer (Natural vision-K 5001, Shin-nippon Co., Japan). We measured at baseline and 1 week after lens wearing. Results: The correcting of corneal refractive power could be effective in low myopia. It's more effective to the higher power of greatest meridian of cornea and the more corneal astigmatism. 73% of subjects' refractive error was decrease less than 1 D and 17% of the subjects had an reverse effect (increase) occurs. The reduction of objective refractive error was more effective when cornea refractive power was great or corneal astigmatism was much. Conclusions: Pressure which the everted silicone hydrogel lens to the cornea could be caused. It occurred as the degrees of corneal power, corneal astigmatism and objective refractive error differences. Selection of an appropriate subject is important considering difficulty of changing the parameters of the lens.
Kim, Kun-Kyu;Lee, Wook-Jin;Lee, Sun-Haeng;Kwak, Ho-Won;Yu, Dong-Sik
Journal of Korean Ophthalmic Optics Society
/
v.15
no.1
/
pp.39-46
/
2010
Purpose: To assess the reliability for measuring the back vertex power of soft contact lenses by dry blotting and wet cell method using an auto-lensmeter. Methods: The soft contact lenses used for measurement were 5 types that were distributed in Korea, and 4 back vertex powers (-1.50D, -3.00D, -6.00D, -9.00D) were used. and repeatability and reproducibility were evaluated by measuring them with an auto-lensmeter by two examiners. Results: Measured powers by dry blotting method were ranged in mean differences from 0.03D to 0.18D for overall lenses, 0.10D to 0.18D for silicone hydrogel lenses, 0.03D to 0.08D for hydrogel lenses. The mean differences between two examiners were less than 0.10D, and the inter-examiner reproducibility was good for dry blotting method. The mean difference between powers determined by wet cell method were 0.09D to 0.69D, the mean differences between two examiners were 0.02D to 0.59D. The reliability of measurements and inter-examiner reproducibility were less than dry blotting method. Conclusions: The reliability of measurements for all materials was better in dry blotting than wet cell method, the re liability of measurements for silicone hydrogel lenses was low in both methods. In clinical practical which requires quick checking of back vertex power using an auto-lensmeter. dry blotting method is thought to be more efficient than wet cell one.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.