• Title/Summary/Keyword: 레티스 바

Search Result 2, Processing Time 0.018 seconds

A Study on Structural Performance of HB-DECK and Cast in Place Concrete Slab (HB-DECK와 현장타설 콘크리트 슬래브의 구조성능에 관한 연구)

  • Lee, Wang-Su;Lho, Byeong-Cheol;Cho, Hyun-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.59-67
    • /
    • 2018
  • The interference between the lattice bar of existing LB-DECK and the bars placed at site degrades the constructability, which is pointed as a problem. HB-DECK simplified the shape of lattice bar, and converted the direction of main rebar direction to the distributing bar direction, and installed the rib on the underside of HB-DECK to increase the stiffness. The purpose of this study is to verify the structural performance of HB-DECK and cast in place concrete slab. The static load test was conducted to verify the structural performance according to Korean highway bridge design code(2015) and composite behavior of HB-DECK with Cast in Place Concrete Slab. Three-dimensional finite element analysis was carried by MIDAS FEA, and analyzed to compare the result of analysis and experiment. At a result, composite behavior was examined between HB-DECK and cast in place concrete slab, and structural performance satisfied Korean highway bridge design code(2015).

A Study on Constructability Improvement of LB-DECK Panel (LB-DECK 패널의 시공성 향상에 관한 연구)

  • Cho, Hyun-Chul;Lho, Byeong-Cheol;Cho, Gyu-Dae;Choi, Kyu-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.122-128
    • /
    • 2009
  • This study is to improve constructability of LB-DECK construction in site such as inconvenience of main and distribution bars in arrangements LB-DECK Panel which is work is applied to many bridges these days as a permanent formwork. So, the constructability is improved by changing the method of allocation of main reinforcing bar and distribution bar which is reviewed for improving efficiency of design and construction process among the suggested methods. The crack shapes, deflections, and strains under static load of the improvement of LB-DECK Panel are compared and analyzed to former LB-DECK Panel. As a result, 13% of strength compared to before the improvement of LB-DECK Panel, and 10% of strength is increased in the case of slab.