• Title/Summary/Keyword: 레저보트 설계

Search Result 33, Processing Time 0.019 seconds

Structural Safety Assessments for Viewing Window of Semi-Submersible Catamaran (반 잠수형 쌍동선에 설치된 수중관람용 관람창 설계 및 구조 안전성 평가)

  • Hwang, Se Yun;Kim, Hosung;Lee, Kyeong Hoon;Kim, Yooil;Lee, Jang Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.291-299
    • /
    • 2014
  • In the design process of ship or its comprising components, the key to the successful design is how to guarantee the structural safety satisfying the international standard and regulation, which sometimes is not clear enough to cover the detail designs. This study deals with the design procedure for submersible viewing window installed in catamaran. As the window material, the Plexiglass, a type of reinforced plastic, is considered to satisfy the design requirements of international standard. Window thickness is calculated using geometric nonlinear finite element analysis, in order to take into account possible large deformation due to low stiffness of the Plexiglass, and the results are compared with those determined by the procedure specified in ISO12216. Finally, for the validation of proposed design, the pressure test had been carried out following the procedure specified in the standard, and structural safety was checked.

A Study on the Development of Ship Building for the Wooden Canoe by Piling-up Laminated Wooden Plates Kit [1] - A Design for canoe hull and laminating wooden plates for piling-up kit - (적층식 평판 키트형 카누 건조 기술 개발에 관한 연구 [1] - 카누 선체의 설계 및 적층식 평판 키트 분할 기법 -)

  • Kim, Heui-Jung;Kim, Shung-Hyun;Jeong, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.762-769
    • /
    • 2009
  • A canoe is one of the most popular boats in leisure on the water. Generally canoe has been built by good wooden strips. And canoe built by FRP is used for business recently. But by the users' demands for good quality and the restriction to environmental pollution the wooden canoes are required for personal and canoe building business. The modern wooden canoes were built by the strip construction method are used typically. However it is not suitable for the mass productivity requires effective resource operations and managements of men, materials, times, and price. On this paper the new construction method, called the piling-up laminated construction method, is studied to building a canoe using the piling-up with the laminated wooden plates gives more productivity than the others. First a canoe with various curved surfaces is designed from 3D design system. And the hull of canoe model is divided horizontally to generating the laminated plates that will be converting real wooden plates available from the market and will be routed by the manufacturing machine. After the simulating and analyzing of piling-up with the laminated plates, the canoe is building with less times, less men, less resources, and lower price than other method, avoid of the requirements of additional building tools. On the next paper the constructing of a real canoe using the manufactured wooden plates will be studied.

A Numerical Study on the Selection of Main Specification of the 18.5ft Bass Fishing Boat (18.5ft급 경기용 배스보트의 주요제원 선정에 관한 수치해석 연구)

  • Lim, Jun-Taek;Seo, Kwang-Cheol;Park, Geun-Hong;Kim, Sang-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.945-952
    • /
    • 2018
  • Recently, bass fishing has become a marine leisure sport in Korea. There are 4 major fishing associations in Korea, and each association holds 10-15 tournaments each year. However, supply of 17 ft bass boats, which are preferred in leagues, depends 100 % on imports. In this study, we have derived the main specifications to develop the initial hull forms of a 18.5ft bass boat through statistical analysis based on mothership data. In addition, CFD numerical analysis was carried out according to deadrise angle and longitudinal center of gravity, which strongly influenced the resistance and planing performance. For numerical analysis, design speed was set to $Fn=3.284 (Re=9.858{\times}10^7)$, the deadrise angle was set from 12 to $20^{\circ}$, and the longitudinal center of gravity was set in the range of 0 to $8%L_{wL}$ from the center of buoyancy to the stern. Based on the numerical results, we first set the range of these factors by resistance performance and immersion keel length. Furthermore, using a correlation graph of Savitsky's Drag-Lift ratio, we derived the deadrise angle ($14-16^{\circ}$) and longitudinal center of gravity ($4-6%L_{wL}$).