• Title/Summary/Keyword: 레일리파 분산

Search Result 22, Processing Time 0.027 seconds

A Numerical Study on the Effect of Near Surface Inhomogeneity on Rayleigh Wave Propagation and Dispersion (천부 불균질대에 의한 레일리파 전파 및 분산특성 고찰)

  • Lee, Sang-Min;Park, Kwon-Gyu;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.2
    • /
    • pp.148-154
    • /
    • 2006
  • The effect of small-scale near surface inhomogeneity on Rayleigh wave propagation and dispersion has been investigated in this study using two-dimensional FEM elastic modeling. Various inhomogeneity models with a variety of geometrical shape and embedment depth which exist in homogeneous half-space and two-layered media are considered. Results show that any near surface inhomogeneity greater than one wavelength in terms of minimum wavelength of Rayleigh wave shows dispersion characteristics. Such dispersion effect become stronger as the dimensions of the inhomogeneity increase. The effect of horizontal dimension is more dominant factor governing the dispersion characteristics than vertical dimension. However, the dispersion effect can not be identifiable in seismogram if the horizontal dimension is not wide enough. Nonetheless, even in this case, the existence of inhomogeneity can be inferred by the reflection or transmission event of Rayleigh wave. The results can be expected to provide insights on the behavior of Rayleigh wave which may be helpful for designating field work or new processing scheme to detect near surface inhomogeneity by surface wave method.

Joint Diversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (I) - Constitution of Joint Diversion Analysis Technique - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(I) - 동시역산해석기법의 구성 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.145-154
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. This analysis consists of the forward modeling using transfer matrix, the sensitivity matrix for evaluating the ground system and DLSS (Damped Least Square Solution) as an inversion technique. The technique of joint inversion uses the dispersion characteristics of Love wave and Rayleigh wave simultaneously making the sensitivity matrix. The sensitivity matrix was used for inversion analysis repeatedly to find the approximate ground stiffness profile. The purpose of the joint inversion analysis is to improve accuracy and convergency of inversion results by utilizing that frequency contribution of each wave is different.

DISPERSION OF RAYLEIGH WAVES IN THE KOREAN PENINSULA (한반도의 레일리파 분산에 대한 연구)

  • Cho Kwang-hyun;Lee Kiehwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.29-36
    • /
    • 2005
  • The crustal structure of Korean Peninsula is investigated by analyzing phase velocity dispersion data of Rayleigh wave. Earthquakes recorded by three component seismographs during 1999 - 2004 in South Korea are used in this study. The fundamental mode signals of Rayleigh waves are obtained from vertical components of seismograms by multiple filter technique method and phase match filter method. Velocity dispersion curves of surface waves for 14 propagation paths on the great circle are computed from the fundamental mode signals on the great circle path by two-station method. Treating the shear velocity of each layer as an independent parameter, phase velocities of Rayleigh wave are inverted. The result models are regarded as average structure for surface wave propagation paths respectively. All the results can be explained by an earth model of the Korean Peninsula comprising crust of shear-wave velocity increasing from 2.8 to 3.25 km/sec from top to 33 km depth and uppermost mantle of shear-wave velocity between 4.55 and 4.67 km/sec.

  • PDF

Joint Inversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (II) - Verification and Application of Joint Inversion Analysis - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(II) - 동시역산해석기법의 검증 및 적용 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.155-165
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. Numerical analysis, theoretical model test, and field test were performed to verify the joint inversion analysis. Results from 2D, 3D finite element analysis were compared with those from the transfer matrix method in the numerical analysis. On the other hand, the difference of results from each inversion analysis was investigated in the theoretical model analysis. Finally, practical applicability of the joint inversion analysis was verified by performing field test. As a result, it is confirmed that considering dispersion information of each wave simultaneously prevents excessive divergence and improves accuracy.

1-D Shear Wave Velocity Structure of Northwestern Part of Korean Peninsula (한반도 북서부의 1차원 전단파 속도구조)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.555-560
    • /
    • 2019
  • One-dimensional shear wave velocity structure of North Korea is constrained using short (2-sec) to long period (30-sec) Rayleigh waves generated from four seismic events in China. Rayleigh waves are well recorded at the five broadband seismic stations (BRD, SNU, CHNB, YKB, KSA) which are located near to the border between North and South Korea. Group velocities of fundamental-mode Rayleigh waves are estimated with the Multiple Filter Analysis and refined by using the Phase Matched Filter. Average group velocity dispersion curve ranging from 2.9 to 3.2 km/s, is inverted to constrain the shear wave velocity structures. Relatively low group velocity dispersion curves along the path between the events to BRD at period from 4 to 6 seconds may correspond to the sedimentary sequence of the West Korea Bay Basin (WKBB) in the Yellow Sea. The low velocity zone in deep layers (14-20 km) may be related to the deep sedimentary structure in Pyongnam basin. The fast shear wave velocity structure from the surface to the depth of 14 km is consistent with the existence of metamorphic rocks and igneous bodies in Nangrim massif and Pyongnam basin.

Inversion of Rayleigh-wave Dispersion Curves for Near-surface Shear-wave Velocities in Chuncheon Area (춘천지역의 천부 횡파속도를 구하기 위한 레일리파 분산곡선 역산)

  • Kim, Ki-Young;Kim, Woo-Jung;Park, Yeong-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • To evaluate methods of determining near-surface shear-wave velocities (${\nu}_s$), we derived dispersion curves of Rayleigh waves generated by both passive and active sources in Chuncheon, Korea. Microtremors were recorded for 5 minutes in each of four triangular arrays with radii of 5 ~ 40 m. Those data were analyzed using the Spatial Autocorrelation method. Rayleigh waves were also generated by a hammer source and recorded in the same area for 2 s using 24 4.5-Hz geophones. Multichannel Analysis of Surface Waves was applied to those data. Velocity spectra were derived with relatively high signal-to-noise ratios in the frequency ranges of 7 ~ 19 and 11 ~ 50 Hz for the microtremors and synthetically generated Rayleigh waves, respectively. The resultant dispersion curves were combined as one and then input to inversion to derive shear wave velocities that were compared with a lithology log from a nearby well. Shearwave velocities in the top soil and soft-rock layers are almost constant with values of 221 and 846 m/s, respectively; while the inverse-modeled ${\nu}_s$ increases linearly in the gravelly sand, cobbles, and weathered-rock layers. If rock type is classified based on shear-wave velocity, the inversion-derived boundary between weathered-rock and soft rock may be about 5 m deeper than in the well log.

Three-dimensional S-wave Velocity Structure and Radial Anisotropy of Crust and Uppermost Mantle Beneath East Asia (동아시아 지각과 최상부맨틀의 3차원 S파 속도구조 및 이방성 연구)

  • Lim, DoYoon;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2018
  • We investigate the crustal and uppermost mantle SV- and SH-wave velocity structure and radial anisotropy beneath East Asia including Korea, China and Japan. Rayleigh waves and Love waves were extracted from the seismic data recorded at broadband seismic stations in East Asia. Using the MFT (Multiple Filter Technique), we obtained group velocity dispersion curves of Rayleigh and Love waves with a period range of 3 to 200 s. We obtained 62466 Rayleigh-waves dispersion-curve measurements in vertical components and 54141 Love-waves dispersion-curve measurements in transverse components, respectively. The inverted models using these data sets provide SV- and SH-wave velocity structure of crust and uppermost mantle down to 100 km depth. In both cases of the S-wave velocity structures, strong high-velocity anomalies are observed down to 30 km depth beneath the East Sea, and deeper than 30 km depth, strong low-velocity anomalies are found beneath the Tibetan plateau. In the case of the SH-wave velocity structure, strong low-velocity anomalies are observed beneath the East Sea deeper than 30 km depth, leading to negative anisotropy. On the other hand, positive anisotropy is usually observed beneath the Tibetan plateau.

Detection of anomalous features in an earthen dam using inversion of P-wave first-arrival times and surface-wave dispersion curves (P파 초동주시와 표면파 분산곡선 역산을 통한 흙댐의 이상대 탐지)

  • Kim, K.Y.;Jeon, K.M.;Hong, M.H.;Park, Young-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • To locate anomalous features including seepage pathways through the Daeryong earth-fill dam, P and Rayleigh waves were recorded along a 250-m profile on the crest of the dam. Seismic energy was generated using a 5-kg sledgehammer and detected by 24 4.5-Hz vertical-axis geophones installed at 3-m intervals. P-wave and apparent S-wave velocities of the reservoir dam and underlying bedrock were then inverted from first-arrival traveltimes and dispersion curves of Rayleigh waves, respectively. Apparent dynamic Poisson's ratios as high as 0.46 were obtained at the base of the dam near its north-east end, where an outlet conduit occurs, and in the clay core body near the south-west end of the profile where the dam was repeatedly grouted to abate seepage before our survey. These anomalies of higher Poisson's ratios in the upper part of clay core were also associated with effusion of grout on the downstream slope of the dam during post-survey grouting to abate leakage. Combining P-wave traveltime tomography and inversion of Rayleigh wave velocities was very effective in detecting potential pathways for seepage and previous grouted zones in this earthen dam.

3D SV-wave Velocity Structure of East Asia using Rayleigh-Wave Tomography (레일리파 토모그래피를 사용한 동아시아의 3차원 SV파 속도구조)

  • You, Seol-Han;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.12-17
    • /
    • 2017
  • We construct 3D SV-wave velocity structure of the crust and the upper mantle beneath East Asia from Rayleighwave group-velocity measurements. For the construction of the SV-wave velocity model at 10 ~ 100 km depth, we used seismic data recorded at 321 broadband stations in Korea, Japan, and China. Rayleigh-wave group-velocity dispersion curves were obtained by using the multiple filtering technique in the period range from 3 to 150 s. High SV-velocity anomalies are imaged beneath the East Sea from 10 km depth to deeper depth, implying that the Moho beneath the East Sea is between at 10 ~ 20 km depth. We estimated the Moho beneath the Korean peninsula to be around 35 km based on the depth where a high-velocity anomaly is observed. The SV-wave velocity model shows prominent fast S-velocity anomalies near northeastern Japan, associated with the subducting Pacific plate. Low-velocity anomalies are found beneath the east coast of the Korean peninsula at 100 km depth, which may play a role in the formation of the Ulleungdo and the Ulleung basin. We observed low-velocity anomalies beneath the Yamato basin at 100 km depth as well, which may indicate the upwelling of fluid from the Pacific plate via dehydration at deeper depth.

Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Wonju, Korea (레일리파 분산을 역산하여 구한 횡파속도를 이용한 원주시의 부지특성)

  • Kim, Chungho;Ali, Abid;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • To reveal shear-wave velocities ($v_s$) and site characterization of Wonju, Korea, Rayleigh waves were recorded at 78 sites of lower altitude using 12 to 24 4.5-Hz vertical geophones for 20 days during the period of February to September 2013. Dispersion curves of the Rayleigh waves obtained by the extended spatial autocorrelation method were inverted using the damped least-squares method to derive $v_s$ models. From these 1-D models, the average $v_s$ to a depth of 30 m ($v_s30$), $v_s$ of weathered rocks, depths to these basement rocks, and average $v_s$ of the overburden layer were derived to be $16.3{\pm}0.7m$, $576{\pm}8m/s$, $290{\pm}7m/s$, and $418{\pm}13m/s$, respectively, in the 95% confidence range. To determine adequate proxies for $v_s30$, we computed correlation coefficients of $v_s30$ with topographic slope (r = 0.46) and elevation (r = 0.43). An empirical linear relationship is presented as a combination of individually estimated $v_s30$ with weighting factors of 0.45, 0.45, and 0.1 for topographic slope, elevation, and mapped lithology, respectively. Due to a weak correlation between $v_s30$ obtained from inversion of dispersion curves and the proxy-based estimation (r = 0.50), however, the relatively large error range should be considered for applications of this relationship.