Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.304-306
/
2001
웹 클러스터링 시스템은 사용자의 집중에 의한 서버의 과부화해 효율적으로 대처할 수 있는 방법 중 하나이다. 공간 질의의 대부분은 인접 영역에 대한 경우가 매우 잦으며. 특정 영역에 집중되는 특성을 갖는다. 타일 기반 웹 GIS 클러스터링 시스템은 이러한 공간 질의의 특성을 만족시키면서 클러스터에 포함되는 각 노드의 버퍼 재 사용률을 높이고 디스크 접근 빈도를 낮출 수 있는 기법을 사용한다. 그러나, 모든 질의가 디스패처를 거치기 때문에 병목현상이 나타날 수 있으며, 질의의 빈도가 낮은 지역의 경우 할당된 지역의 범위에 의해 버퍼 관리에 문제가 생긴다. 본 논문에서는 확장된 WARD기법을 사용한 웹 GIS 클러스터링 시스템을 제안한다. 제안되는 시스템은 타일 기반 웹 GIS클러스터링 시스템을 기반으로 디스패처를 분산시켜 병목현상을 줄이고, 각 지역을 그룹으로 묶어 플러스터를 분배하여 대용량의 공간 데이터를 위해 적절한 버퍼 관리를 한다. 또한, 질의가 집중되는 영역에 대한 레이어를 모든 노드의 코어 영역에 중복 저장하여 로컬에서 지역적으로 처리하고 다른 노드로의 처리 요구에 대한 포워딩(Forwarding) 오버헤드를 줄여 기존의 서버에 비해 안정성와 확장성 그리고 처리 능력을 향상시킬 수 있다.
Proceedings of the Korean Information Science Society Conference
/
1999.10a
/
pp.343-345
/
1999
데이터베이스 시스템은 실세계에서의 객체들이 다양한 모델링을 통하여 구축된 데이터베이스에 대해 검색, 갱신, 분석 출력 및 논리적인 일관성 제어 등을 할 수 있는 소프트웨어 시스템이다. 그러나 전통적인 데이터베이스 시스템은 시간에 따라 변화하는 데이터의 이력을 관리 할 수 없다. 따라서 이력정보(Historical Informations)를 관리할 수 있게 하기 위해서는 시간차원의 확장이 필요하다. 즉, 기존의 데이터베이스 시스템이 제공하지 못하였던 각 정보들의 이력관리와 이력을 이용한 다양한 서비스를 가능하게 하도록 시간차원을 지원할 수 있는 데이터베이스 시스템을 시간 데이터베이스 시스템이라 하며, 이를 위하여 이 논문에서는 객체관계형 데이터베이스 시스템을 기반으로 객체관계형의 특징과 레이어 개념을 이용하여 새로운 시간차원을 확장함으로써, 기존의 시스템을 현 상태로도 유지할 수 있는 시간 데이터베이스 시스템을 말한다.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.142-144
/
2002
대부분의 내용기반 이미지 검색 시스템은 이미지의 특징 벡터인 색상, 모양, 그리고 질감에 의해서 유사한 이미지를 검색하는 기법을 제공하고 있다. 최근 이러한 내용기반 이미지 검색 기술은 의료 영상 이미지와 같은 다양한 분야에 적용되고 있으며, 이에 따라서 의료 이미지를 분석하여 저장, 검색하기 위한 데이터베이스 시스템이 증가하고 있다. 그러나, 대량의 이미지로부터 원하는 이미지를 검색하기 위해서는 이미지의 메타데이타를 효율적으로 표현해야 하며, 의미성과 이미지의 특징 데이터를 통합적으로 저장 관리 할 수 있는 이미지 데이터베이스를 설계하고 구축해야만 한다. 본 논문에서는 기존의 내용기반 이미지 검색 기법을 살펴보고. 이미지를 내용기반으로 분류하고 저장할 수 있는 데이터베이스 시스템을 설계하여 효율적인 의미기반 검색을 지원말 수 있는 모델을 제시한다. 다계층 메타데이타 레이어 구조로 이미지에 대한 개념 지식 모델을 표현하고, 이미지내의 객체를 메타데이타로 표현하여 분류할 수 있는 모델을 제안한다. 또한, 이미지 내용검색을 지원하기 위한 시스템 구조를 설계하고, 메타데이타가 저장되기 위한 관계형 모델을 스타 스키마의 형태로 제시한다. 제안된 방법은 의미적인 이미지 내용 검색 방법의 지원에 활용될 수 있다.
현재 RDBMS는 대부분 블록기반의 스토리지를 사용하는데 오늘날 정형화 되지 않은 데이터 타입에 대한 요청이 많아지고 있어서 오브젝트 스토리지를 사용하려는 연구가 활발히 진행 되고 있다. 그래서 본 논문을 통해 오브젝트 스토리지를 사용하는 RDBMS 환경을 제안한다. 오브젝트 스토리지 중 오픈 소스로 많이 사용되고 있는 Swift와 Ceph를 사용하여 시스템을 구축, 두 시스템간의 파일 및 RDBMS 성능비교를 진행하였다. Swift와 Ceph는 동일한 인터페이스가 아니기에 중간에 새로운 레이어를 추가하여 POSIX 환경에서 테스트가 가능하도록 하였다. 데이터베이스는 Postgresql을 사용하였고 두 시스템 간의 성능측정은 파일벤치마크인 IOzone 그리고 Posgresql에서 지원하는 TPC-B 기반 pgbench를 사용, 노드 확장성과 가상 클라이언트 수를 비교표로 활용하여 실험을 진행하였다.
In this paper, we propose a performance improvement of the LwF method using efficient path selection in Continuous Learning Environment. We compare performance and structure with conventional LwF. For comparison, we experiment with performance using MNIST, EMNIST, Fashion MNIST, and CIFAR10 data with different complexity configurations. Experiments show up to 20% improvement in accuracy for each task, which mitigating the Catastrophic Forgetting phenomenon in Continuous Learning environments.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.1-4
/
2019
최근에 딥러닝 기술을 적용한 보행자 검출 연구가 활발히 진행되고 있다. 연구자들은 딥러닝 네트워크를 이용하여 보행자 오검출율을 낮추는 방법에 대해 지속적으로 연구하여 성능을 꾸준히 상승시켰다. 그러나 대부분의 연구는 다중 스케일 보행자가 분포되는 저해상도 영상에서 보행자를 제대로 검출하지 못하는 어려움이 존재한다. 따라서 본 연구에서는 기존의 Faster R-CNN구조를 기반으로 하여 새로운 다중 특징 융합 레이어와 다중 스케일 앵커 박스를 적용하여 보행자 오검출율을 줄이는 MS-FRCNN(Multi-scaleFaster R-CNN)구조를 제안한다. 제안된 방식의 성능 검증을 위해 Caltech 데이터세트를 이용하여 실험한 결과, 제안된 MS-FRCNN방식이 기존의 다른 보행자 검출 방식보다 다중 스케일 보행자 검출에서 medium 조건하에 5%, all 조건하에 3.9% 나아짐을 알 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.11a
/
pp.81-83
/
2018
Fully Convolutional Network(FCN)은 기존의 방법보다 뛰어난 성능을 보였지만, FCN은 RGB 정보만을 사용하기 때문에 세밀한 예측이 필요한 장면에서는 다소 부족한 성능을 보였다. 이를 해결하기 위해 인코더-디코더 구조를 이용하여 RGB와 깊이의 멀티 모달을 활용하기 위한 FuseNet이 제안되었다. 하지만, FuseNet에서는 RGB와 깊이 브랜치 사이의 융합은 있지만, 인코더와 디코더 사이의 특징 지도를 융합하지 않는다. 본 논문에서는 FCN의 디코더 부분의 업샘플링 과정에서 이전 계층의 결과와 2배 업샘플링한 결과를 융합하는 스킵 레이어를 적용하여 FuseNet의 모달리티를 잘 활용하여 성능을 개선했다. 본 실험에서는 NYUDv2와 SUNRGBD 데이터 셋을 사용했으며, 전체 정확도는 각각 77%, 65%이고, 평균 IoU는 47.4%, 26.9%, 평균 정확도는 67.7%, 41%의 성능을 보였다.
본 논문에서는 고해상도의 시계열 위성영상을 딥러닝 알고리즘으로 학습하여 도시 변화탐지를 수행한다. 고해상도 위성영상을 활용한 서비스는 4 차 산업혁명 융합 신사업 중 하나인 스마트시티에 적용하여 도시 노후화, 교통 혼잡, 범죄 등 다양한 도시 문제 해결 및 효율적인 도시를 구축하는데 활용이 가능하다. 이에 본 연구에서는 도시 변화탐지를 위한 딥러닝 알고리즘으로 DeepLabV3+를 사용한다. 이는 인코더-디코더 구조로, 공간 정보를 점진적으로 회복함으로써 더욱 정확한 물체의 경계면을 찾을 수 있다. 제안하는 방법은 DeepLabV3+의 레이어와 loss function 을 수정하여 기존보다 좋은 결과를 얻었다. 객관적인 성능평가를 위해, 공개된 데이터셋 LEVIR-CD 으로 학습한 결과로 평균 IoU 는 0.87, 평균 Dice 는 0.93 을 얻었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.675-679
/
2020
최근 이미지 분류의 성능 향상을 위해 깊은 레이어와 넓은 채널을 가지는 모델들이 제안되어져 왔다. 높은 분류 정확도를 보이는 모델을 제안하는 것은 과한 컴퓨팅 파워와 계산시간을 요구한다. 본 논문에서는 이미지 분류 기법에서 사용되는 딥 뉴럴 네트워크 모델에 있어, 프루닝 방법을 통해 상대적으로 불필요한 가중치를 제거함과 동시에 분류 정확도 하락을 최소로 하는 동적 필터 프루닝 방법을 제시한다. 원샷 프루닝 기법, 정적 필터 프루닝 기법과 다르게 제거된 가중치에 대해서 소생 기회를 제공함으로써 더 좋은 성능을 보인다. 또한, 재학습이 필요하지 않기 때문에 빠른 계산 속도와 적은 컴퓨팅 파워를 보장한다. ResNet20 에서 CIFAR10 데이터셋에 대하여 실험한 결과 약 50%의 압축률에도 88.74%의 분류 정확도를 보였다.
Kim, Bong-Su;Kim, Jungwook;Whang, Taesun;Lee, Saebyeok
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.199-202
/
2021
의미역 결정은 입력된 문장 내 어절간의 의미 관계를 예측하기 위한 자연어처리 태스크이며, 핵심 서술어에 따라 상이한 의미역 집합들이 존재한다. 기존의 연구는 문장 내의 서술어의 개수만큼 입력 문장을 확장해 순차 태깅 문제로 접근한다. 본 연구에서는 확장된 입력 문장에 대해 구문 분석을 수행 후 추출된 문장 구조 정보를 의미역 결정 모델의 자질로 사용한다. 이를 위해 기존에 학습된 구문 분석 모델의 파라미터를 전이하여 논항의 위치를 예측한 후 파이프라인을 통해 의미역 결정 모델을 학습시킨다. ALBERT 사전학습 모델을 통해 입력 토큰의 표현을 얻은 후, 논항의 위치에 대응되는 표현을 따로 추상화하기 위한 계층형 트랜스포머 인코더 레이어 구조를 추가했다. 실험결과 Korean Propbank 데이터에 대해 F1 85.59의 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.