• Title/Summary/Keyword: 레이져 스캐너

Search Result 18, Processing Time 0.023 seconds

Analysis and Control f Contact Mode AFM (접촉모드 AFM의 시스템 분석 및 제어)

  • 정회원;심종엽;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • Recently, scientists introduced a new type of microscope capable of investigating nonconducting surfaces in an atomic scale, which is called AFM (Atomic Force Microscope). It was an innovative attempt to overcome the limitation of STM (Scanning Tunnelling Microscope) which has been able to obtain the image of conducting surfaces. Surfaces of samples are imaged with atomic resolution. The AFM is an imaging tool or a profiler with unprecedented 3-D resolution for various surface types. The AFM technology, however, leaves a lot of room for improvement due to its delicate and fragile probing mechanism. One of the room for improvements is gap control between probe tip and sample surface. Distance between probe tip and sample surface must be kept in below one Angtrom in order to measure the sample surface in Angstrom resolution. In this paper, AFM system modeling, experimental system identification and control scheme based on system identification are performed and finally sample surface is measured by home-built AFM with such a control scheme.

  • PDF

Quantitative Estimation of Shoreline Changes Using Multi-sensor Datasets: A Case Study for Bangamoeri Beaches (다중센서를 이용한 해안선의 정량적 변화 추정: 방아머리 해빈을 중심으로)

  • Yun, Kong-Hyun;Song, Yeong Sun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.693-703
    • /
    • 2019
  • Long-term coastal topographical data is critical for analyzing temporal and spatial changes in shorelines. Especially understanding the change trends is essential for future coastal management. For this research, in the data preparation, we obtained digital aerial images, terrestrial laser scanning data and UAV images in the year of 2009. 2018 and 2019 respectively. Also tidal observation data obtained by the Korea Hydrographic and Oceanographic Agency were used for Bangamoeri beach located in Ansan, Gyeonggi-do. In the process of it, we applied the photogrammetric technique to extract the coastline of 4.40 m from the stereo images of 2009 by stereoscopic viewing. In 2018, digital elevation model was generated by using the raw data obtained from the laser scanner and the corresponding shoreline was semi-automatically extracted. In 2019, a digital elevation model was generated from the drone images to extract the coastline. Finally the change rate of shorelines was calculated using Digital Shoreline Analysis System. Also qualitative analysis was presented.

Development of a Frontal Collision Detection Algorithm Using Laser Scanners (레이져 스캐너를 이용한 전방 충돌 예측 알고리즘 개발)

  • Lee, Dong-Hwi;Han, Kwang-Jin;Cho, Sang-Min;Kim, Yong-Sun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.113-118
    • /
    • 2012
  • Collision detection plays a key role in collision mitigation system. The malfunction of the collision mitigation system can result in another dangerous situation or unexpected feeling to driver and passenger. To prevent this situation, the collision time, offset, and collision decision should be determined from the appropriate collision detection algorithm. This study focuses on a method to determine the time to collision (TTC) and frontal offset (FO) between the ego vehicle and the target object. The path prediction method using the ego vehicle information is proposed to improve the accuracy of TTC and FO. The path prediction method utilizes the ego vehicle motion data for better prediction performance. The proposed algorithm is developed based on laser scanner. The performance of the proposed detection algorithm is validated in simulations and experiments.

A Study on the Extraction of Slope Surface Orientation using LIDAR with respect to Triangulation Method and Sampling on the Point Cloud (LIDAR를 이용한 삼차원 점군 데이터의 삼각망 구성 방법 및 샘플링에 따른 암반 불연속면 방향 검출에 관한 연구)

  • Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.46-58
    • /
    • 2016
  • In this study, a LIDAR laser scanner was used to scan a rock slope around Mt. Gwanak and to produce point cloud from which directional information of rock joint surfaces shall be extracted. It was analyzed using two different algorithms, i.e. Ball Pivoting and Wrap algorithm, and four sampling intervals, i.e. raw, 2, 5, and 10 cm. The results of Fuzzy K-mean clustering were analyzed on the stereonet. As a result, the Ball Pivoting and Wrap algorithms were considered suitable for extraction of rock surface orientation. In the case of 5 cm sampling interval, both triangulation algorithms extracted the most number of the patch and patched area.

An Analysis of Scour Effect on Hydraulic Energy Dissipater Installation at Weir Downstream (보 하류부 감세공 설치에 대한 세굴 변화 분석)

  • Kang, Joon-Gu;Lee, Chang-Hun;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.453-458
    • /
    • 2016
  • While the design of weirs requires a scour-considered strategy, research on the analysis of the effectiveness of hydraulic energy dissipaters and design criteria are scarce due to the limited experimental facilities and restraint in the experiment conduction period. The study analyzed the scour dissipation effect of multidirectional dissipaters to improve the scour problems of a weir downstream and suggests design criteria to minimize scour. A hydraulic model experiment was conducted for Nakdong River Hapcheon-Changnyeong Weir and a model in 1/25 of horizontal accumulation and 1/25 of vertical accumulation was produced. The experimental equipment was classified into channels and a flow rate supply and an underwater pump were installed to enable flow at a maximum of 2.0 m3/s. The experimental inflow was 1.3 m3/s, the upstream water level was 0.36 m, downstream water level was 0.24 m, and a cylinder wooden baffle, a dissipater, with a diameter of 0.05 m was made. A 3D scanner was also used for an accurate scour depth comparison for a length change of the baffle before and after installing the baffle. When the baffle was arranged in the shape of a V, the depth of scour decreased by 36% while the scour length decreased by 49% due to flow reduction compared to that before installing the baffle.

A 3D Terrain Reconstruction System using Navigation Information and Realtime-Updated Terrain Data (항법정보와 실시간 업데이트 지형 데이터를 사용한 3D 지형 재구축 시스템)

  • Baek, In-Sun;Um, Ky-Hyun;Cho, Kyung-Eun
    • Journal of Korea Game Society
    • /
    • v.10 no.6
    • /
    • pp.157-168
    • /
    • 2010
  • A terrain is an essential element for constructing a virtual world in which game characters and objects make various interactions with one another. Creating a terrain requires a great deal of time and repetitive editing processes. This paper presents a 3D terrain reconstruction system to create 3D terrain in virtual space based on real terrain data. In this system, it converts the coordinate system of the height maps which are generated from a stereo camera and a laser scanner from global GPS into 3D world using the x and z axis vectors of the global GPS coordinate system. It calculates the movement vectors and the rotation matrices frame by frame. Terrain meshes are dynamically generated and rendered in the virtual areas which are represented in an undirected graph. The rendering meshes are exactly created and updated by correcting terrain data errors. In our experiments, the FPS of the system was regularly checked until the terrain was reconstructed by our system, and the visualization quality of the terrain was reviewed. As a result, our system shows that it has 3 times higher FPS than other terrain management systems with Quadtree for small area, improves 40% than others for large area. The visualization of terrain data maintains the same shape as the contour of real terrain. This system could be used for the terrain system of realtime 3D games to generate terrain on real time, and for the terrain design work of CG Movies.

A study on Waviness of Large Discontinuity using 3D Laser Scanner (3D Laser Scanner를 이용한 대규모 불연속면의 굴곡도 측정 연구)

  • Kim, Yong;Lee, Su-Gon;Kim, Chee-Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.119-124
    • /
    • 2017
  • The waviness of Large Discontinuity rock is the one of important elements that judges the stability of rock slope. When the waviness of large discontinuity is measured in the field, there are many limitations Therefore this research was carried out to measure waviness of large rock discontinuities using 3D laser scanner to supplement this problem. This research established one 3D model that actual X, Y and Z coordinates through the integrated data gained from one that calculates waviness of base lock using CAD program was compared and analyzed to that of disc-clinometer. As its results, the high reliability of results could be recognized as it belongs to mechanical tolerance $1{\sim}2^{\circ}$ and the results belong to the measured values of Mean DIP and Mean are all within $1^{\circ}$. So, the investigation method of waviness of large discontinuity rock face using 3D laser scanner was verified as more prompt, effective and reliable method than conventional direct site measuring method.

Application of Photo-realistic Modeling and Visualization Using Digital Image Data in 3D GIS (디지털 영상자료를 이용한 3D GIS의 사실적 모델링 및 가시화)

  • Jung, Sung-Heuk;Lee, Jae-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.73-83
    • /
    • 2008
  • For spatial analysis and decision-making based on territorial and urban information, technologies on 3D GIS with digital image data and photo-realistic 3D image models to visualize 3D modeling are being rapidly developed. Currently, satellite images, aerial images and aerial LiDAR data are mostly used to build 3D models and textures from oblique aerial photographs or terrestrial photographs are used to create 3D image models. However, we are in need of quality 3D image models as current models cannot express topographic and features most elaborately and realistically. Thus, this study analyzed techniques to use aerial photographs, aerial LiDAR, terrestrial photographs and terrestrial LiDAR to create a 3D image model with artificial features and special topographic that emphasize spatial accuracy, delicate depiction and photo-realistic imaging. A 3D image model with spatial accuracy and photographic texture was built to be served via 3D image map services systems on the Internet. As it was necessary to consider intended use and display scale when building 3D image models, in this study, we applied the concept of LoD(Level of Detail) to define 3D image model of buildings in five levels and established the models by following the levels.