• Title/Summary/Keyword: 레이저 여기 초음파

Search Result 8, Processing Time 0.021 seconds

Non-Contact Ultrasonic Testing of Aircraft Joints using Laser Generated Lamb Wave (레이저 여기 램파를 이용한 항공기 판재 접합부의 비접촉식 초음파 검사)

  • Jhang, Kyoung-Young;Kim, Hong-Joon;Ceringlia, Donatella;Djordjevic, Boro
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.163-168
    • /
    • 2001
  • Due to aging, adhesively bonded and riveted aircraft lap joints can contain distends, cracks around rivet holes, fatigue induced flaws, and corrosion. It is required for the safety of aircraft to inspect these defects through the whole region of mint in rapid speed. Bond quality or adhesively bonded and riveted aluminum lap splice joints is investigated using non-contact remote ultrasonic nondestructive evaluation (NDE). Non-contact ultrasonic tests are performed using laser generation and air-coupled transducer detection. A Q-switched Nd:YAG laser and a periodic transmission mask are used to generate a selected Lamb mode. The Lamb wave is generated on one side of the lap splice joint, propagates along the plate, interacts with the joint and is detected on the other side by a micromachined air-coupled capacitance transducer. Analysis of recorded signals allows to evaluate the condition of the bond.

  • PDF

2 D Computer Simulation of Laser-Generated Ultrasonic Wave (레이저 여기 초음파의 2차원 컴퓨터 시뮬레이션)

  • Kim, Gyeong-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1847-1853
    • /
    • 2000
  • A computer simulation technique for 2-dimensional laser generated ultrasonic waves was developed for visualization and investigation of ultrasonic propagation in solids. The technique is similar to a finite difference method (FDM) and a mass-particle model method, but uses a new nodal calculation method based on fundamental consideration of an elastic wave equation. By this method, the propagation behavior oflaser generated ultrasonic wave in thermoelastic and ablation mode is visualized and shows good agreement with previous experimental result or the numerical analysis result by Green function.

Detection of Laser Generated Ultrasonic Wave Using Michelson Interferometer (마이켈슨 간섭계를 이용한 레이저 여기 초음파의 검출)

  • Kim, Kyung-Cho;Yamawaki, Hisashi;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • In this paper, ultrasonic wave in the thermoelastic regime was generated in a steel disk by illuminating a pulse laser (Q-switched Nd:YAG) on the surface of the sample and was detected on the other side by Michelson interferometer which was stabilized by feed back control. The experimentally detected displacement waveform of the ultrasonic wave showed good agreement with the theoretically expected one. Also it was shown that sound speeds of longitudinal and shear wave were similar to ones measured by pulse-echo method using a contact transducer. As an application of the noncontact ultrasonic measurement by using laser based ultrasonics, the sound speed in the sample was monitored while the sample was heated in a furnace, and the result showed that it decreased according to the increase of sample temperature.

  • PDF

Propagation of Bulk Longitudinal Waves in Thin Films Using Laser Ultrasonics (레이저 초음파를 이용한 체적종파의 박막 내 전파특성 연구)

  • Kim, Yun Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.266-272
    • /
    • 2016
  • This paper presents the investigation of the propagation behavior of bulk longitudinal waves generated by an ultrafast laser system in thin films. A train of femtosecond laser pulses was focused onto the surface of a 150-nm thick metallic (chromium or aluminum) film on a silicon substrate to excite elastic waves, and the change in thermoreflectance at the spot was monitored to detect the arrival of echoes from the film/substrate interface. The experimental results show that the film material characteristics such as the wave velocity and Young's modulus can be evaluated through curve-fitting in numerical solutions. The material properties of nanoscale thin films are difficult to measure using conventional techniques. Therefore, this research provides an effective method for the nondestructive characterization of nanomaterials.

Detection of Laser excited Lamb-wave using Air-coupled Transducer and Identification of Propagation Mode using Wavelet Transform (공기-결합 트랜스듀서를 이용한 레이저 여기 램파의 검출과 웨이브렛 변환을 이용한 전파모드 규명)

  • Kim, Hyun-Mook;Kim, Hong-Jun;Jhang, Kyung-Young;Lee, Jun-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.851-856
    • /
    • 2003
  • This paper proposes a single-mode Lamb-wave generation and detection system using a pulsed laser as a generator and an air-coupled transducer combined with the wavelet transform analysis, as the detector. The laser source with arrayed linear slits was used to generate Lamb-wave which is able to control the wavelength of Lamb-wave to be generated by changing the slits separation. An ari-coupled transducer was used to receive Lamb-wave, which can selectably receive a single mode of leaky Lamb wave by changing the oblique angle of transducer, since the leaky Lamb-wave has unique leaky-angle according to the mode. Also, the received signal was processed by wavelet transform for the analysis in domain of time-frequency. The theoretical dipersion curve and the experimetal result was compared to show good agreement.

  • PDF

Finite Element Simulation of Laser-Generated Ultrasound and Interaction with Surface Breaking Cracks (유한요소법을 이용한 레이저 유도 초음파와 표면 균열과의 상호작용 모델링)

  • Jeong, Hyun-Jo;Park, Moon-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.259-267
    • /
    • 2004
  • A finite element method is used to simulate interaction of laser-based ultrasounds with surface breaking tracks in elastic media. The laser line source focused on the surface of semi-infinite medium is modeled as a shear dipole in 2-D plane strain finite elements. The shear dipole-finite clement model is found to give correct directivity patterns for generated longitudinal and shear waves. The interaction of surface waves with surface breaking cracks (2-D machined slot) is considered in two ways. Both the source and receiver are fixed with respect to the cracks in the first case, while the source is moving in another case. It is shown that the crack depth tested in the range of 0.3-5.0mm $({\lambda}_R/d=0.21{\sim}3.45)$ can be measured using the corner reflected waves produced by the fixed laser source. The moving laser source is found to cause a large amplitude change of reflected waves near crack, and the crack whose depth is one order lower than the wavelength ran be detected from this change.

A Study on the Mechanism of Object Transport System using Ultrasonic Excitation (초음파 여기를 이용한 물체 이송시스템의 메커니즘 연구)

  • 정상화;최석봉;차경래;김광호;박준호;이경형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.149-154
    • /
    • 2004
  • In the semiconductor and the optical industry a new transport system which can replace the conventional sliding system is required. These systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problem. In this paper, the relationship of transporting speed according to the change of flexural beam shape and the effect of transporting speed according to the change of weight and amplification voltage are verified. The vibration behavior of flexural beam in the ultrasonic transport system is experimented using Laser Scanning Vibrometer.

  • PDF

Fully Non-Contact Assessment of Acoustic Nonlinearity According to Plastic Deformation in Al6061 Alloy (Al6061 합금의 소성변형에 따른 음향비선형 특성의 완전 비접촉식 평가)

  • Lee, Hyeon;Chung, Cheon;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.388-392
    • /
    • 2012
  • This study proposes a fully non-contact measurement method to assess acoustic nonlinearity of narrowband surface waves generated by a line-arrayed laser beam by using a laser-ultrasonic detector in the way of two-wave mixing (TWM) method. This method was applied to figure out a relationship between plastic deformation and nonlinearity characteristics of a plastically deformed aluminum specimens. The experimental results showed that the acoustic nonlinearity of the laser-generated surface wave increased proportionally to the level of tensile deformation. This tendency is in good agreement with the result of measurement by contact method with PZT-transducer.