• Title/Summary/Keyword: 레이저 반사 간섭계

Search Result 16, Processing Time 0.03 seconds

Damage Measurement for Molybdenum Thin Film Using Reflection-Type Digital Holography (반사형 디지털 홀로그래피를 이용한 Molybdenum 박막의 손상 측정)

  • Kim, Kyeong-Suk;Jung, Hyun-Il;Shin, Ju-Yeop;Ma, Hye-Joon;Kwon, Ik-Hwan;Yang, Seung-Pill;Hong, Chung-Ki;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2015
  • In the fabrication of electronic circuits used in electronic products, molybdenum thin films are deposited on semiconductors to prevent oxidation. During the deposition, the presence of a particle or dust at the interface between the thin film and substrate causes the decrease of adhesion, performance, and life cycle. In this study, a damage measurement targeting two kinds of glass substrate, with and without particles, was performed in order to measure the change in the molybdenum thin film deposition area in the presence of a particle. Clean and dirty molybdenum thin film specimens were fabricated and directly deposited on a substrate using the sputtering method, and a reflection-type digital holographic interferometer was configured for measuring the damage. Reflection-type digital holography has several advantages; e.g., the configuration of the interferometer is simple, the measurement range can be varied depending on the magnification of a microscopic lens, and the measuring time is short. The results confirm that reflection-type digital holography is useful for the measurement of the damage and defects of thin films.

Role of Liquid Vaporization in Liquid-Assisted Laser Cleaning (액막 보조 레이저 세척에서 액체 기화의 역할)

  • Lee, Joo-Chul;Jang, Deok-Suk;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.188-196
    • /
    • 2003
  • Liquid-assisted cleaning technology utilizing a nanosecond laser pulse is effective for removing submicron particulates from a variety of solid substrates. In the technique, saturated vapor is condensed on a solid surface to form a thin liquid film and the film is evaporated explosively by laser heating. The present work studies the role of liquid-film evaporation in the cleaning process. First, optical interferometry is employed for in-situ monitoring the displacement of the laser-irradiated sample in the cleaning process. The experiments are performed for estimating the recoil force exerted on the target with and without liquid deposition. Secondly, time-resolved visualization and optical reflectance probing are also conducted for monitoring the phase-change kinetics and plume dynamics in vaporization of thin liquid layers. Discussions are made on the effect of liquid-film thickness and dynamics of plume and acoustic wave. The results confirm that cleaning force is generated when the bubble nuclei initially grow in the strongly superheated liquid.

Ultrasensitive laser interferometer for precision measurement of small vibration displacement (고감도 레이저 간섭계를 이용한 미소 진동 진폭의 정밀측정)

  • 서상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.440-449
    • /
    • 1988
  • Small vibration displacements may be measured by optical interferometers, based on the Michelson method. The standard Michelson interferometer works well when the mirror displacements are relatively large compared to the optical wavelength. But it does not work for displacements less than approximately a quater of optical wavelength. Several multiple reflection laser interferometers, simply modified standard Michelson interferometer, have been developed to decrease the minimum detectable limits. Among these a relatively simple and easy multiple reflection system is used to measure the small vibration displacements. This multiple reflection system is constructed with a right angle prism and a convex lens. Therefore this system makes it possible to measure a vibration displacement of the small area on the vibrating structure. The fringe interpolation method and curve fitting method are used to determine accurately the small vibration displacements from the measured interference fringe patterns. Also computer simulation technique is used to check the accuracies of these method. According to the results of the computer simulation technique, the curve fitting method is more accurate than the fringe interpolation method. The optically measured results are in good agreement with those of the standard accelerometer with high accuracy and it is possible to measure the peak vibration displacement as small as 9.01nm using multiple reflection system and curve fitting method.

Design and Construction of a High Temperature Creep Tester for Thin Film Specimens (박막시험편용 고온 크리프 시험기의 설계 및 제작)

  • Ko, Gyoung-Dek;Lee, Sang-Shin;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.253-259
    • /
    • 2007
  • A new material tester has been developed to measure mechanical properties of thin film specimens at high temperature. It is useful for observing oxide film growth or local deformation on the surface, and for measuring creep strength. Main characteristics of the tester is as follows; First, high temperature is achieved by Joule heating generated by electricity passing through the specimen, which does not need to enclose the specimen by a furnace or a heating chamber. The exposed specimen enables one to observe the surface during the test. Because the overall size of the test rig is compact, the whole test rig can be placed in a chamber for environmental controlled tests. The loading device is from a level scales. Not only static load with fixed counter weight, but also variable load by moving counter weight controlled remotely can be applied for an ordinary creep test and creep-fatigue test, respectively. The detail of the construction, operation principle, and the specification are described. And also, an example of test result obtained using the creep tester is presented.

The Development and Installation of the DNSM 1meter Telescope

  • Choi, Eunwoo;Hur, Hyeonoh;Jeon, Hae-Jin;Hong, Daegil;Choi, Dong-Soo;Kim, Kyoung-Rock;Cho, Young-Dong;Kwak, Tae-Yoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.53.1-53.1
    • /
    • 2016
  • 국립대구과학관 천체 관측 핵심시설인 1m 반사망원경을 개발하고 설치 완료하였다. 본 발표에서는 국립대구과학관 1m 망원경의 시스템 사양과 개발 및 설치과정을 전반적으로 기술하고 앞으로의 활용계획에 대해 소개하고자 한다. 이번에 도입된 주망원경은 지난 2014년 11월부터 광학계 및 마운트 설계를 시작으로 2016년 5월까지 약 1년 6개월의 개발기간을 거쳐 설치 완료되었다. 순수 국내기술로 개발된 주망원경은 주경 1,000mm(부경 300mm)의 유효구경을 가지며 후방초점거리가 700mm인 초점비 F/8의 리치-크레티앙 방식의 광학계로 설계되었다. 레이저 간섭계를 이용하여 거울면 전체의 형상 오차를 정밀하게 측정한 결과 주경면 PV < ${\lambda}/4$, RMS < ${\lambda}/20$, 부경면 PV < ${\lambda}/10$, RMS < ${\lambda}/50$의 형상 정밀도를 가진다. 포크형태의 경위대식 마운트 구조로 방위각, 고도 양축과 디로테이터에 각각 모터가 장착되어 움직이는 다이렉트 드라이브 방식으로 구동된다. 최대 구동속도는 $2^{\circ}/s$이상, 포인팅 정밀도는 2'이하, 10분간 추적 정밀도는 3"이하(10분간 오토가이더 추적 정밀도는 1"이하)의 구동 성능을 가진다. 제어용 컨트롤 시스템은 JTCS(Justek Telescope Control System)를 사용한다. 성능 평가를 위해 시험 관측된 10~13등급 사이 10개의 별들에 대한 FWHM 측정결과는 4~5" 범위에 있다. 앞으로 지속적인 성능 평가와 업그레이드를 통해 향후 정밀도를 높여 학술 연구용으로 공개할 예정이다. 이번 국립대구과학관 1m 주망원경의 도입으로 지역 천문교육 프로그램이 한 단계 더 도약할 수 있을 것으로 기대한다.

  • PDF

Polymeric Waveguide Bio Sensors with Bragg Gratings (브래그 격자 광도파로형 바이오 센서)

  • Lee, Jae-Hyun;Kim, Gyeong-Jo;Oh, Min-Choel
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • Biophotonic sensors based on polymer waveguide with Bragg reflection grating are demonstrated in this work. Waveguide Bragg reflectors were designed by using the effective index method and the transmission matrix method. The grating pattern was formed by exposing the laser interference pattern on a photoresist. On top of the inverted rib waveguide, the Bragg reflection grating was inscribed by the O2 plasma etching. In order to perform the bio-molecule detection experiment, a calixarene molecule was self-assembled on top of thin Au film deposited on the waveguide Bragg reflector. To measure the response of the sensor, several PBS solutions with different concentrations of potassium ion from 1 pM to $100\;{\mu}M$ were dropped on the sensor surface. The shift of Bragg reflection wavelength was observed from the fabricated sensor device, which was proportional to the concentration of potassium ion ranging from 1 pM to 108 pM.