• Title/Summary/Keyword: 레이저 미세 드릴링

Search Result 12, Processing Time 0.023 seconds

특집 : 레이저 기반 초정밀 초고속 가공시스템 - PCB pattern 미세화에 따른 UV laser driller의 개발

  • Park, Hong-Jin;Seo, Jong-Hyeon
    • 기계와재료
    • /
    • v.22 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • 최근 휴대폰 등 모방일 전자기기 산업에서 차세대 고부가 PCB(MLB, HDI, FPC, 등) 및 고기능 PCB(COF, MOF, SOF)의 급속한 적용 확대로 직경$20{\mu}m$급의 비아홀(viahole) 및 interconnection 홀 가공을 위한 초정밀/초고속 레이저 드릴링 공정 및 장비기술 개발에 대한 시장의 요구가 급증하고 있다. 이에 반해 기존의 CO2 레이저 드릴링은 기술적 한계에 도달하여 시장의 요구에 대응이 불가하며, 선진업체에서는 최근 UV 레이저 드릴링 장비에 대한 시장 점유율을 높여가고 있다. 특히 국내시장은 미국의 ESI사가 독점하고 있어 기술개발 투자를 통한 국산화가 절실한 상황이다. 이에 당사에서는 초고속/초정밀 UV laser 시스템을 이용한 FPC iva hole drilling을 연구과제로 개발을 진행하고 있으며 국산화를 넘어서 세계시장점유를 목표로 공정장비개발을 진행중이다.

  • PDF

Ultrafast Laser Micro-machining Technology (극초단 펄스 레이저 응용 미세가공기술)

  • Lee, Jae-Hoon;Sohn, Hyon-Kee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.7-12
    • /
    • 2010
  • Due to the extremely short interaction time (< $10\times10^{-12}$sec) between laser pulse and material, which enables the minimization of heat affection, ultrafast laser micro-machining has rapidly widened its applications. In this paper, the characteristics of ultrafast laser micro-machining have been reviewed and experimentally demonstrated in laser drilling of silicon wafer and in laser cutting of rigid PCB.

CO$_{2}$ 레이저를 이용한 정밀 절단 가공 기술

  • 윤경구;이성국;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.77-86
    • /
    • 1991
  • 레이저 빔이갖고있는 spatial coherence 특성에 의해서 렌즈를 이용하여 집광시키면 집광부에서 고출력 밀도를 얻을 수 있다. 이와같이 집광된 레이저 빔을 재료의 표면에 조사하면 재료로 부터 미세량을 용융, 증발시키므로 일반적인 방법으로는 가공이 어려운 단단한 재료의 절단과 미세 구멍가공이 가능하게된다. 본 논문에서는 출력, 펄스 수, defoucsing, pulse on-time, 보조가스 압력등을 변화 시키면서 드릴링 실험을 수행하고, 각 실험 조건에서의 구멍 형상과 깊이를 측정함으로써 가공 변수들의 process sensitivity를 평가하였다.

Experimental study on micro-hole drilling of anodized aluminum using picosecond laser (피코초 레이저를 이용한 양극산화 알루미늄 미세 홀 가공의 실험적 연구)

  • Oh, B.K.;Bang, J.H.;Kim, J.K.;Lim, S.M.;Lee, S.K.;Jeong, S.H.;Hong, S.K.
    • Laser Solutions
    • /
    • v.17 no.2
    • /
    • pp.5-10
    • /
    • 2014
  • Aluminum has been widely used in the electric applications because of light metals. When mechanical element is periodically moving with contacting other surfaces, the anodizing process for aluminum is useful for avoiding the abrasive damage. The anodized element has quietly different characteristics with respect to the distribution of hardness and crystal structure. In this work, the laser drilling of anodized surface is studied experimentally. Fusion drilling method - laser drilling with inert gas blowing - is used. The effect of various process parameters (gas pressure, laser power, focus position) is investigated with respect to the hole size and circularity.

  • PDF

Laser Beam Application and Technology in Micro Machining (레이저 빔 응용 기술)

  • 윤경구;이성국;김재구;신보성;최두선;황경현;박진용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.27-35
    • /
    • 2000
  • 재료가공분야에의 레이저의 적용은 1960년대 후반부터 시작되었으며, 고출력 CO$_2$ 와 Nd:YAG 레이저가 많은 산업분야에서 보편화될 정도로 발전하여 왔다. 재료가공에서의 레이저의 적용분야는 금속의 절단, 용접 및 드릴링, 세라익의 스크라이빙, 플라스틱과 복합재의 절단 및 여러 가지 재료의 마킹 등을 포함한다. 이와 같은 모든 응용에서 공통적인 것이 레이저 조사에 의해 재료를 용융, 증발시키는 열적 메카니즘이다.(중략)

  • PDF

세포 포집 소자 제작을 위한 펨토초 레이저 미세 가공

  • Park, Hyeon-Ae;Lee, Jun-Gi;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.303-303
    • /
    • 2011
  • 최근 세포 포집 소자 제작에 있어 세포의 종류와 크기의 다양성을 고려하여 정확하게 포집하기 위한 고정밀화, 소형화 된 도구 제작 기술 개발이 중요한 현안으로 떠오르고 있다. 본 연구에서는 선행 기술에서의 세포 포집 한계를 극복하기 위한 방안으로 펨토초 레이저 가공을 통한 미세 세포 포집 장치 제작에 관한 실험을 진행하였다. 펨토초 레이저의 짧은 파장의 대역 범위와 전력 특성이 미세 소자 제작을 가능하게 함에 따라 수백, 수천 개의 세포 포집에 있어 보다 안정적이고 신뢰도 높은 포집 장치 구현을 실현시킬 수 있다. 실험에서는 펨토초 레이저의 가공 조건을 가변하며 MEMS 소자에 홀(hole)을 형성시켰다. flatness 200인 Polycarbonate 재질의 기판 위에 CNC공작기계를 사용하여 유로를 제작하고 상부에 젤라틴 코팅 부분 2를 포함한 총 두께 12의 membrane 필름을 부착하였다. 이후 775 nm 파장의 펨토초 레이저를 사용하여 10${\times}$10 개수의 홀을 형성 한 후 홀 주위의 thermal damage와 레이저의 파워에 따른 홀의 형태와 크기 변화를 비교하였다. 실험 결과 membrane 막의 젤라틴 코팅 측면 홀의 평균 직경은 레이저의 파워와 비례하여 증가하였으며, 레이저 파워가 일정한 임계치에 도달하면 특정 시점에서 수렴됨을 확인하였다. 또한 PET 측면의 직경은 서서히 증가하고 빠르게 일정한 값으로 수렴됨을 확인하였다. 본 실험에서는 펨토초 레이저의 특성 파라미터와 레이저의 가공 조건을 수립함으로써 실험에서 사용 된 레이저를 이용한 드릴링 방안을 제시한다.

  • PDF

Stress Modeling of the Laser Drilling Process in Carbon Steel (레이저 드릴링을 통한 강판 가공 시 응력 모델링)

  • Lee, Wooram;Kim, Joohan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.857-864
    • /
    • 2013
  • A laser machining process has been applied in many manufacturing fields and it provides an excellent energy control for treating materials. However, a heat effect during laser machining can deteriorate material properties. Specifically, a thermally induced stress can be a problem in laser-machined structures on a metal surface. In this study, temperature and stress on cold-rolled carbon steel sheet machined with laser hole drilling were explored in an experimental approach and a numerical method. Stresses by temperature gradients inside the materials were generated in fast cooling. The stresses were measured by using a hole-drilling method and the material properties of carbon steel (SCP1-S) were obtained in the experiment. It was found that the stress predicted from the numerical analysis was in agreement with the stresses measured by using the hole-drilling method. The analysis can be applied for evaluating structure characteristics machined with a laser.

Laser Drilling System for Fabrication of Micro via Hole of PCB (인쇄회로기판의 미세 신호 연결 홀 형성을 위한 레이저 드릴링 시스템)

  • Cho, Kwang-Woo;Park, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.14-22
    • /
    • 2010
  • The most costly and time-consuming process in the fabrication of today's multi-layer circuit board is drilling interconnection holes between adjacent layers and via holes within a layer. Decreasing size of via holes being demanded and growing number of via holes per panel increase drilling costs. Component density and electronic functionality of today's multi-layer circuit boards can be improved with the introduction of cost-effective, variable depth laser drilled blind micro via holes, and interconnection holes. Laser technology is being quickly adopted into the circuit board industry but can be accelerated with the introduction of a true production laser drilling system. In order to get optimized condition for drilling to FPCB (Flexible Printed Circuit Board), we use various drill pattern as drill step. For productivity, we investigate drill path optimization method. And for the precise drilling the thermal drift of scanner and temperature change of scan system are tested.

Laser Micro Machining in MEMS (레이저를 이용한 미세가공)

  • 윤경구;이성국;김재구;최두선;신보성;황경현
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.48-49
    • /
    • 2000
  • 최근 몇 년 동안 레이저는 품질과 신뢰성의 계속적인 향상으로 인하여 여러 산업 응용분야에서 폭넓게 사용되어 지고 있다. 재료가공에 있어서 레이저의 적용분야는 금속의 절단, 용접 및 드릴링, 세라믹의 스크라이빙, 플라스틱과 복합재료의 절단 및 여러 가지 재료의 마킹, 등을 포함한다. 이러한 가공 메카니즘은 레이저의 조사에 의하여 재료를 용융, 증발시키는 열적 메카니즘이다. 특히 요즘에는 자외선 영역의 조사와 높은 빔의 세기에 의해 다른 종류의 에너지 전달 메카니즘이 가능한 UV 영역의 엑사이머 레이저의 사용이 증가하고 있다.$^{(1)}$ 이러한 엑사이머 레이저가 기존의 다른 레이저에 비해서 갖는 이점은 다음과 같다. 첫째, 모든 금속이 엑사이머 레이저에 대해서는 높은 흡수율을 가지므로 레이저 에너지가 가공 에너지로 효율적으로 변환되기 때문에 얇은 표면층에서 완전히 흡수하게 된다. (중략)

  • PDF

Laser Micro-drilling of Sapphire/silicon Wafer using Nano-second Pulsed Laser (나노초 펄스 레이저 응용 사파이어/실리콘 웨이퍼 미세 드릴링)

  • Kim, Nam-Sung;Chung, Young-Dae;Seong, Chun-Yah
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.13-19
    • /
    • 2010
  • Due to the rapid spread of mobile handheld devices, industrial demands for micro-scale holes with a diameter of even smaller than $10{\mu}m$ in sapphire/silicon wafers have been increasing. Holes in sapphire wafers are for heat dissipation from LEDs; and those in silicon wafers for interlayer communication in three-dimensional integrated circuit (IC). We have developed a sapphire wafer driller equipped with a 532nm laser in which a cooling chuck is employed to minimize local heat accumulation in wafer. Through the optimization of process parameters (pulse energy, repetition rate, number of pulses), quality holes with a diameter of $30{\mu}m$ and a depth of $100{\mu}m$ can be drilled at a rate of 30holes/sec. We also have developed a silicon wafer driller equipped with a 355nm laser. It is able to drill quality through-holes of $15{\mu}m$ in diameter and $150{\mu}m$ in depth at a rate of 100holes/sec.