• Title/Summary/Keyword: 레이저토모그래피법

Search Result 7, Processing Time 0.017 seconds

Study on Optimal Arrangements of Laser Beams in Tunable Diode Laser Absorption Spectroscopy Based Tomography (TDLAST) (레이저흡수분광 토모그래피법에서의 레이저빔의 최적 배치에 관한 연구)

  • KIM, KYUNGWON;YOON, DONGIK;CHOI, DOOWON;CHO, GYEONGRAE;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.729-737
    • /
    • 2017
  • The measurement accuracy of Tunable Diode Laser Absorption Spectroscopy based Tomography (TDLAST) for the temperature and concentration fields are dependant upon the arrangement method of the used laser beams. This paper reports on the optimization of laser beam arrangements using phantom data. It has been verified that the measurement error of the TDLAST decreased with increase of laser beam numbers. Further, it has been confirmed that perpendicular arrangements between the horizontal and the vertical laser beams without additional diagonal laser beams shows the minimum measurement errors.

2D Temperature Measurement of CT-TDLAS by Using Two-Ratios-of-Three-Peaks Algorithm (컴퓨터토모그래피 레이저흡수분광법(CT-TDLAS) 기반 2차원 온도분포 산정 Two-Ratios-of-Three-Peaks (2R3P) 알고리듬 개발)

  • CHOI, DOOWON;CHO, GYONGRAE;SHIM, JOONHWAN;DEGUCHI, YOSHIHIRO;KIM, DONGHYUK;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.3
    • /
    • pp.318-327
    • /
    • 2016
  • In order to improve the performance of temperature field measurements by CT-TDLAS (Computer Tomography Tunable Diode Laser Absorption Spectroscopy), a new reconstruction algorithm, named two-ratios-of-three-peaks method is proposed in this paper. Further, two methods for selecting appropriate initial values of the iterative calculation of CT-TDLAS are proposed. One is MLOS (multiplicative line of sight) method and the other one is ALOS (additive line of sight) method. Two-ratios-of-three-peaks (2R3P) algorithm combined with MART (multiplicative algebraic reconstruction technique) is finally developed for the enhancements of reconstructive calculations. The results have been compared with those obtained by the conventional one-ratio-of-two-peaks (1R2P) algorithm. In order to evaluate the performance of this algorithm, numerical test has been performed using phantom Gaussian temperature distributions with $11{\times}11$ square mesh. The performance of the constructed algorithm has been demonstrated by comparing the results obtained in actual burner experiments with those obtained by thermocouples. It has been verified that 2R3P algorithm with MART and MLOS showed best performance than that of 1R2P algorithm.

Tomographic Reconstruction of Asymmetric Soot Structure from Multi-angular Scanning (다각 주사법을 이용한 비대칭 매연분포의 재구성)

  • Lee, S.M.;Hwang, J.Y.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.55-61
    • /
    • 1999
  • A convolution algorithm combined with Fourier transformation is applied to the tomographic reconstruction of the asymmetric soot structure to identify the local soot volume fraction distribution. The line of sight integrated data from light extinction measurement with multi-angular scanning form basic information for the deconvolution. Multi-peak following interpolation technique is applied to obtain the effect of increasing number of scanning angles. Measurement of LII signal for the same flame shows the validity of this reconstruction technigue.

  • PDF

Development of Signal Processing Technique of Digital Speckle Tomography for Analysis of Three-Dimensional Density Distributions of Unsteady and Asymmetric Gas Flow (비정상 비대칭 기체 유동의 3차원 밀도 분포 분석을 위한 디지털 스펙클 토모그래피 기법의 신호 처리 기술 개발)

  • Baek, Seung-Hwan;Kim, Yong-Jae;Ko, Han-Seo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.108-114
    • /
    • 2006
  • Transient and asymmetric density distributions of butane flow have been investigated from laser image signals by developed three-dimensional digital speckle tomography. Moved signals of speckles have been captured by multiple CCD images in three angles of view simultaneously because the flows were asymmetric and transient. The signals of speckle movements between no flow and downward butane flow from a circular half opening have been calculated by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays fur density gradients. The three-dimensional density fields have been reconstructed from the fringe shift signal which is integrated from the deflection angle by a real-time multiplicative algebraic reconstruction technique (MART).

An Elementary Study on the Combustion Mechanism of Levitated Droplet Clusters by Ultrasonic Wave (초음파를 이용한 부상유적군의 연소기구에 관한 기초연구)

  • Jung, Jin-Do;Kim, Seung-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1191-1199
    • /
    • 2003
  • This paper describes to observe the combustion process of only one droplet cluster. In this study, liquid fuel was atomized by ultrasonic wave to form an acoustically levitated droplet cluster. In order to elucidate the detailed structure of burning process of the droplet cluster, laser tomography method was applied. Time-series planar images of fuel droplets were processed and diameter of the each droplet was calculated based on the Mie-scattering theory. Using these data, the modified droplet group combustion number was estimated in time-series. As the result, when the internal droplet group combustion occur, the modified group combustion number dose not decrease monotonically, but show a tow-staged decreasing process. In all case of combustion process, combustion reactions were measured two types that combustion speed was fast and slow. It was casued by difference of concentration degree and droplet size distribution.

Study on Optimal Coefficients of Line Broadening Function for Performance Enhancements of CT-TDLAS (CT-레이저흡수분광법(TDLAS) 성능향상을 위한 레이저 선폭확장 함수 최적 계수 선정에 관한 연구)

  • CHOI, DOOWON;CHO, GYONGRAE;DEGUCHI, YOSHIHIRO;BAEK, TAESIL;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.773-782
    • /
    • 2016
  • The performance of the CT-TDLAS (computed tomography-tunable diode laser absorption spectroscopy) is strongly dependent upon the line broadening functions. The line of the laser beam used in the TDLAS is scattered by the natural broadening, the collisional broadening and the doppler broadening. The influence of the natural broadening to the experimental spectra obtained in the TDLAS is negligible. The influences of the collisional broadening and the doppler broadening to the experimental spectra are relatively large, in high pressure gas flows and in high temperature low pressure gas flows, respectively. In this study, optimal coefficients are proposed for the doppler broadening function by using the experimental data obtained in a flat burner test. The optimal coefficients were ${\gamma}_j=0.16$ and n=0.37. Using these coefficients, the temperature and concentration distributions at the engine exhaust gas pipe have been calculated showing their validities.

Developments of a Cross-Correlation Calculation Algorithm for Gas Temperature Distributions Based on TDLAS (레이저흡수분광법(TDLAS) 기반 가스온도분포 산정을 위한 상호상관계산 알고리듬 개발)

  • CHOI, DOOWON;KIM, KWANGNAM;CHO, GYONGRAE;SHIM, JOONHWAN;KIM, DONGHYUK;DEGUCHI, YOSHIHIRO;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.127-134
    • /
    • 2016
  • Most of reconstruction algorithms for the calculation of temperature distributions in CT (computed tomography)-TDLAS (tunable diode laser absorption spectroscopy) are based upon two-line thermometry method. This method gives unstable calculation convergence due to signal noise, bias error, and signal mis-matches. In this study, a new reconstruction algorithm based on cross-correlation for temperature calculation is proposed. The patterns of the optical signals at all wave lengths were used to reconstruct the temperature distribution. Numerical test has been made using phantom temperature distributions. Using these phantom temperature data, absorption spectra for all wave lengths were constructed, and these spectra were regarded as the signals that would be obtained in an actual experiments. Using these virtually generated experimental signals, temperature distribution was once again reconstructed, and was compared with those of the original phantom data. Calculation errors obtained by the newly proposed algorithm were slightly large at high temperatures with small errors at low temperature.