• Title/Summary/Keyword: 레이저빔용접

Search Result 102, Processing Time 0.016 seconds

Electron beam weldability of Niobium (니오븀의 전자빔 용접성)

  • An, Byung-Hun;Yoon, Jong-Won;Kim, Sook-Hwan
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.15-19
    • /
    • 2008
  • Electron beam (EB) weldability of pure grade Nb sheet was studied. One of Nb sheets was as-annealed and the other was cold rolled. Microstructures, Vickers hardness, and transverse weld tensile test were carried out for the base metal, the heat affected zone (HAZ) and weld metal. In the case of the EB welds made using the annealed Nb sheeet, fine equiaxed grains and coarse grains were dominant at the base metal and the HAZ, respectively, and columnar grains were observed at the weld metal. For the EB welds made using the cold rolled Nb sheet, elongated grains in the rolling direction at the base metal, and the microstructures of the weld metal and the HAZ are similar to those of the EB welds made using the annealed Nb sheet, respectively. For both annealed and cold rolled Nb sheet, the width of the HAZs are unusually wide in spite of using high density heat source, i.e. electron beam, and the grain sizes of both HAZs are similar. When tensile test was carried out using the transverse weld specimens, the failure occurred at the HAZ for both EB welds made using Nb sheets annealed and cold rolled, respectively and the tensile strengths of both specimens were 161MPa. Vickers hardness of EB welds made using annealed Nb was 56-57 Hv at both base metal and weld metal, 52-53 Hv at the HAZ. On the other hand, Vickers hardness of EB welds made using cold rolled Nb was 97-99 Hv at the base metal, but the hardness values of weld metal were similar to those obtained at the weld metal of annealed Nb.

  • PDF

A Study on Pulsed Nd:YAG Laser Welding of Electron Gun in Braun Tubes (I) - Characteristics of Beam Output Energy and Optical Parameters - (브라운관 전자총 부품의 펄스 Nd:YAG레이저 용접에 관한 연구 (I) - 빔의 출력특성과 광학변수 -)

  • 김종도;하승협;조상명
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.525-534
    • /
    • 2002
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two roles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets. The deepest penetration depth is gotten on focal position, and a "bead transition" occurred with a slight displacement of focal position relative to the workpiece surface and the absorption rate of the laser energy is affected by the shape factor of the workpiece. When we changed the incident angle of laser beam, the penetration depth was decreased a little with increasing of the incident angle, and the bead width was increased. The spattering was prevented by considering laser beam energy and incident angle.ent angle.