• 제목/요약/키워드: 레이블 추출

검색결과 120건 처리시간 0.022초

의존 경로와 음절단위 의존 관계명 분포 기반의 Bidirectional LSTM CRFs를 이용한 한국어 의존 관계명 레이블링 (Korean Dependency Relation Labeling Using Bidirectional LSTM CRFs Based on the Dependency Path and the Dependency Relation Label Distribution of Syllables)

  • 안재현;이호경;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.14-19
    • /
    • 2016
  • 본 논문은 문장에서의 어절 간 의존관계가 성립될 때 의존소와 지배소가 어떠한 관계를 가지는지 의존 관계명을 부착하는 모델을 제안한다. 국내에서 한국어 의존구문분석에 관한 연구가 활발히 진행되고 있지만 의존 관계만을 결과로 제시하고 의존 관계명을 제공하지 않는 경우가 많았다. 따라서 본 논문에서는 의존 경로(Dependency Path)와 음절의 의존 관계명 분포를 반영하는 음절 임베딩를 이용한 의존 관계명 부착 모델을 제안한다. 문장에서 나올 수 있는 최적의 입력 열인 의존 경로(Dependency Path)를 순차 레이블링에서 좋은 성능을 나타내고 있는 bidirectional LSTM-CRFs의 입력 값으로 사용하여 의존 관계명을 결정한다. 제안된 기법은 자질에 대한 많은 노력 없이 의존 경로에 따라 어절 및 음절 단어표상(word embedding)만을 사용하여 순차적으로 의존 관계명을 부착한다. 의존 경로를 사용하지 않고 전체 문장의 어절 순서를 바탕으로 자질을 추출하여 CRFs로 분석한 기존 모델보다 의존 경로를 사용했을 때 4.1%p의 성능향상을 얻었으며, 의존 관계명 분포를 반영하는 음절 임베딩을 사용한 bidirectional LSTM-CRFs는 의존 관계명 부착에 최고의 성능인 96.01%(5.21%p 개선)를 내었다.

  • PDF

대화 데이터를 위한 멘션 탐지 및 상호참조해결 파이프라인 모델 (Mention Detection and Coreference Resolution Pipeline Model for Dialogue Data)

  • 김담린;김홍진;박성식;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.264-269
    • /
    • 2021
  • 상호참조해결은 주어진 문서에서 상호참조해결의 대상이 될 수 있는 멘션을 추출하고, 같은 개체를 의미하는 멘션 쌍 또는 집합을 찾는 자연어처리 작업이다. 하나의 멘션 내에 멘션이 될 수 있는 다른 단어를 포함하는 중첩 멘션은 순차적 레이블링으로 해결할 수 없는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 멘션의 시작 단어의 위치를 여는 괄호('('), 마지막 위치를 닫는 괄호(')')로 태깅하고 이 괄호들을 예측하는 멘션 탐지 모델과 멘션 탐지 모델에서 예측된 멘션을 바탕으로 포인터 네트워크를 이용하여 같은 개체를 나타내는 멘션을 군집화하는 상호참조해결 모델을 제안한다. 실험 결과, 4개의 영어 대화 데이터셋에서 멘션 탐지 모델은 F1-score (Light) 94.17%, (AMI) 90.86%, (Persuasion) 92.93%, (Switchboard) 91.04%의 성능을 보이고, 상호참조해결 모델에서는 CoNLL F1 (Light) 69.1%, (AMI) 57.6%, (Persuasion) 71.0%, (Switchboard) 65.7%의 성능을 보인다.

  • PDF

준 지도 학습과 커리큘럼 학습을 이용한 유사 기사 추천 모델 (Semi-supervised GPT2 for News Article Recommendation with Curriculum Learning)

  • 서재형;오동석;어수경;박성진;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.495-500
    • /
    • 2020
  • 뉴스 기사는 반드시 객관적이고 넓은 시각으로 정보를 전달하지 않는다. 따라서 뉴스 기사를 기존의 추천 시스템과 같이 개인의 관심사나 사적 정보를 바탕으로 선별적으로 추천하는 것은 바람직하지 않다. 본 논문에서는 최대한 객관적으로 다양한 시각에서 비슷한 사건과 인물에 대해서 판단할 수 있도록 유사도 기반의 기사 추천 모델을 제시한다. 길이가 긴 문서 사이의 유사도를 측정하기 위해 GPT2 [1]언어 모델을 활용했다. 이 과정에서 단방향 디코더 모델인 GPT2 [1]의 단점을 추가 학습으로 개선했으며, 저장 공간의 효율과 핵심 문단 추출을 위해 BM25 [2]함수를 사용했다. 그리고 준 지도 학습 [3]을 통해 유사도 레이블링이 되어있지 않은 최신 뉴스 기사에 대해서도 자가 학습을 진행했으며, 이와 함께 길이가 긴 문단에 대해서도 효과적으로 학습할 수 있도록 문장 길이를 기준으로 3개의 단계로 나누어진 커리큘럼 학습 [4]방식을 적용했다.

  • PDF

한글 외곽선 폰트의 자소 분할 (Hangul Component Decomposition in Outline Fonts)

  • 구상옥;정순기
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제17권4호
    • /
    • pp.11-21
    • /
    • 2011
  • 본 논문은 한글 외곽선 폰트를 입력으로 글자의 초성, 중성, 종성 요소(컴포넌트)를 통계적-구조적 정보를 이용하여 분할하는 방법을 제안한다. 한 폰트 내에서 한글 컴포넌트는 통계적으로 일정한 위치에 나타나며, 각 컴포넌트를 이루는 획 간의 관계는 그 컴포넌트의 구조적 특징을 나타낸다. 우리는 먼저 각 컴포넌트의 위치를 저장하는 컴포넌트 히스토그램을 생성하여 컴포넌트 위치에 관한 통계 정보를 저장하였다. 그리고 글자의 구조적 정보를 반영하기 위해 픽셀의 방향성 확률을 기반으로 픽셀클러스터를 만들고, 클러스터의 위치, 방향 및 크기, 클러스터간 인접성 정보를 이용하여 후보 획을 추출하였다. 마지막으로 릴렉세이션 레이블링을 통해 후보 획 집합과 미리 정의된 글자 모델 간의 가장 적합한 구조적 매치를 구하였다. 본 논문에서 제안한 컴포넌트 분할방법은 한글 폰트의 조형적 특징에 관한 연구 및 이를 활용한 폰트분류 빛 폰트검색에 활용될 수 있다.

링크내역을 이용한 페이지점수법 알고리즘 (PageRank Algorithm Using Link Context)

  • 이우기;신광섭;강석호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권7호
    • /
    • pp.708-714
    • /
    • 2006
  • 웹은 정보의 저장 및 검색에 있어서 보편적인 매체가 되고 있다. 웹에서 정보 검색은 검색엔진을 출발점으로 이용하는 것이 대부분이지만, 그 결과는 사용자의 요구와 늘 일치하는 것은 아니며 때로는 의도적으로 조작된 검색 결과가 제시되기도 한다. 검색엔진의 데이타를 의도적으로 조작하는 것을 스패밍(spamming)이라고 부르며, 다양한 스패밍과 방지기술이 있지만, 최근에 각광을 받고있는 링크기반 검색 방식에는 스패밍이 쉽지 않은 것으로 알려져 있다. 그러나 이러한 방식에서도 구글폭탄(Google Bombing)과 같이 페이지점수법(PageRank)을 조작할 수 있는 약점이 있다. 본 논문에서는 이러한 약점을 방지할 수 있는 알고리즘을 제시한다. 기본적으로 링크 기반 검색 방식을 기초로 하여 웹을 하나의 유향 레이블 그래프로 인식하여 각 웹 페이지들은 하나의 노드로, 하이퍼링크는 에지로 표현함에 있어서 본 연구에서는 링크구조를 기반으로 링크내역(link context)을 부여하고 이를 에지의 레이블로 사용한다. 링크내역과 대상 페이지 사이의 유사도를 구하고, 이것을 이용하여 페이지점수법의 인접행렬을 재구성하는 방법을 취했다. 결과로써 기존의 방법 및 특이값 추출기법(SVD)에 기반한 새로운 기준을 도입해 그 효과를 입증했다.

한국어 서술어와 지식베이스 프로퍼티 연결 (Linking Korean Predicates to Knowledge Base Properties)

  • 원유성;우종성;김지성;함영균;최기선
    • 정보과학회 논문지
    • /
    • 제42권12호
    • /
    • pp.1568-1574
    • /
    • 2015
  • 본 논문은 자연언어 문장을 지식베이스의 지식 골격에 맞추어 지식의 형태로 변환하기 위한 과정 중의 하나인 관계추출(Relation Extraction)을 목표로 한다. 특히, 문장 내에 있는 서술어(Predicate)에 집중하여 서술어와 관련성 높은 지식베이스 프로퍼티(Property or Relation)를 찾아내고, 이를 통해 두 개체(Entity)간의 의미를 파악하는 관계추출에 초점을 둔다. 이에 널리 활용되는 원격지도학습(Distant Supervision) 접근 방식에 따라, 지식베이스와 자연언어 텍스트로부터 원격 학습이 가능한 레이블(Labeled) 데이터를 자동으로 마련하여 지식베이스 프로퍼티에 대한 어휘화 작업을 수행한다. 즉, 두 개체 사이의 관계로 표현되는 서술어와, 온톨로지로 정의할 수 있는 프로퍼티와의 연결을 통해, 텍스트로부터 구조적 정보를 생성할 수 있는 기반을 마련하고 최종적으로 지식베이스 확장의 가능성을 열어준다.

짧은 음성을 대상으로 하는 화자 확인을 위한 심층 신경망 (Deep neural networks for speaker verification with short speech utterances)

  • 양일호;허희수;윤성현;유하진
    • 한국음향학회지
    • /
    • 제35권6호
    • /
    • pp.501-509
    • /
    • 2016
  • 본 논문에서는 짧은 테스트 발성에 대한 화자 확인 성능을 개선하는 방법을 제안한다. 테스트 발성의 길이가 짧을 경우 i-벡터/확률적 선형판별분석 기반 화자 확인 시스템의 성능이 하락한다. 제안한 방법은 짧은 발성으로부터 추출한 특징 벡터를 심층 신경망으로 변환하여 발성 길이에 따른 변이를 보상한다. 이 때, 학습시의 출력 레이블에 따라 세 종류의 심층 신경망 이용 방법을 제안한다. 각 신경망은 입력 받은 짧은 발성 특징에 대한 출력 결과와 원래의 긴 발성으로부터 추출한 특징과의 차이를 줄이도록 학습한다. NIST (National Institute of Standards Technology, 미국) 2008 SRE(Speaker Recognition Evaluation) 코퍼스의 short 2-10 s 조건 하에서 제안한 방법의 성능을 평가한다. 실험 결과 부류 내 분산 정규화 및 선형 판별 분석을 이용하는 기존 방법에 비해 최소 검출 비용이 감소하는 것을 확인하였다. 또한 짧은 발성 분산 정규화 기반 방법과도 성능을 비교하였다.

에지 및 컬러 양자화를 이용한 모바일 폰 카메라 기반장면 텍스트 검출 (Mobile Phone Camera Based Scene Text Detection Using Edge and Color Quantization)

  • 박종천;이근왕
    • 한국산학기술학회논문지
    • /
    • 제11권3호
    • /
    • pp.847-852
    • /
    • 2010
  • 자연 영상 내에 포함된 텍스트는 영상의 다양하고 중요한 특징을 갖는다. 그러므로 텍스트를 검출하고 추출하여 인식하는 것이 중요한 연구대상으로 연구되고 있다. 최근 모바일 폰 카메라를 기반으로 다양한 분야에서 많은 응용 기술이 연구 개발되고 있다. 본 논문은 에지 및 연결요소를 이용한 장면 텍스트 검출 방법을 제안한다. 그레이스케일 영상으로부터 에지 성분 검출과 지역적 표준편차를 이용하여 텍스트 영역의 경계선을 검출하고, RGB 컬러공간의 유클리디안 거리를 기준으로 연결요소를 검출한다. 검출된 에지 및 연결요소를 레이블링하고 각각 영역의 외곽사각형을 구한다. 텍스트의 휴리스틱 이용하여 후보 텍스트를 추출한다. 후보 텍스트 영역을 병합하여 하나의 후보 텍스트 영역을 생성하고, 후보 텍스트의 지역적 인접성과 구조적 유사성으로 후보 텍스트를 검증함으로서 최종적인 텍스트 영역을 검출하였다. 실험결과 에지 및 컬러 연결요소 특징을 상호 보완함으로서 텍스트 영역의 검출률을 향상시켰다.

가우시안 가중치 거리지도를 이용한 PET-CT 뇌 영상정합 (Co-registration of PET-CT Brain Images using a Gaussian Weighted Distance Map)

  • 이호;홍헬렌;신영길
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권7호
    • /
    • pp.612-624
    • /
    • 2005
  • 본 논문에서는 PET-CT 뇌 영상융합을 위해 가우시안 가중치 거리지도를 이용한 표면기반 영상정합을 제안한다. 제안방법은 중요 세 단계로 표면 특징점 추출, 가우시안 가중치 거리지도 생성, 가중치기반 유사도 평가로 구성된다. 첫째, PET 영상과 CT 영상에서 삼차원 역 영역성장법을 이용하여 머리영역을 분할하고 머리 영역과 같이 분할된 잡음 영역을 영역성장법기반 레이블링을 이용한 영역 크기 비교를 통해 제거한 후 선명화 처리 필터를 적용하여 머리 표면 특징점을 추출한다. 둘째, CT 영상에서 추출한 표면 특징점에 가우시안 가중치 거리지도를 생성하여 큰 변위에서도 최적의 위치로 견고하게 수렴하도록 한다. 셋째, 가중치기반 상호상관관계는 PET 영상에서 추출한 표면 특징점과 대응되는 CT 영상의 가우시안 가중치 거리지도를 이용하여 최적 위치를 탐색한다. 본 논문에서는 제안방법의 정확성과 견고성 검사를 위해 인공데이타를 이용하고, 수행시간과 육안평가를 위해 임상데이타를 이용한다. 정확성 검사는 임의로 변환된 인공데이타에 제안방법을 적용한 후 추출된 최적화 변환벡터와의 오차를 제곱근평균제곱오차를 이용하여 평가한다. 견고성 검사는 큰 변위와 잡음을 가지는 인공데이타에서 가중치기반 상호상관관계가 최적의 위치에서 최대를 이루는지를 평가한다 실험 결과 제안한 표면기반 영상정합이 기존 표면기반 영상정합보다 정확하고 견고하게 수렴됨을 알 수 있다.

화소의 기울기와 레이블링을 이용한 효율적인 바코드 검출 알고리즘 (Bar Code Location Algorithm Using Pixel Gradient and Labeling)

  • 김승진;정윤수;김봉석;원종운;원철호;조진호;이건일
    • 정보처리학회논문지D
    • /
    • 제10D권7호
    • /
    • pp.1171-1176
    • /
    • 2003
  • 바코드의 기하학적 특징과 레이블링을 이용하여 효율적으로 추출하는 알고리즘을 제안하였다. 네 개의 라인 연산자(line operator)[8]를 이용하여 화소가 가지는 방향을 구한 후, 블록 별로 각 방향에 대한 화소의 누적 히스토그램(histogram)을 구한다. 히스토그램에서 최대값과 최소값의 차가 가장 큰 블록을 바코드 영역의 블록이라고 결정한다. 구해진 블록만을 이용하여 바코드의 중심을 지나가는 직선을 구할 수도 있지만 좀더 정확한 직선을 구하기 위해 바코드 영역에 있는 많은 블록들을 찾는다. 가장 큰 차 값을 이용하여 문턱값을 구하고 블록별로 히스토그램의 최대값과 최소값의 차가 문턱값보다 큰 블록을 바코드의 기하학적(a) 특징을 갖는 블록으로 분류함으로써 블록을 대상으로 영상을 이진화한다. 이진화 한 영상에 대해 레이블링(labeling)[8,9]을 행하여 바코드 영역의 후보 블록들을 결정한다. 후보 블록들의 화소를 이용하여 바코드의 기울기와 중심점을 바코드의 중심점을 구하여 바코드와 수직이고 바코드의 중심을 지나가는 직선을 그을 수 있으며 바코드를 검출 할 수 있다. 수직선이 지나갈 때 화소값을 순차적으로 획득함으로써 바코드가 가지고 있는 정보를 파악한다.