제어 가능하고 상황에 따라 반응하는 아바타의 제작은 컴퓨터 게임 및 가상현실 분야에서 중요한 연구 주제이다. 최근에는 아바타 애니메이션과 제어의 사실성을 높이기 위해 대규모 동작 캡처 데이타가 활용되고 있다. 방대한 양의 동작 데이타는 넓은 범위의 자연스러운 인간 동작을 수용할 수 있다는 장점을 갖는다. 하지만 동작 데이타가 많아지면 적절한 동작을 찾는데 필요한 계산량이 크게 증가하여 대화형 아바타 제어에 있어 병목으로 작용한다. 이 논문에서 우리는 레이블링(labeling)이 되어있지 않은 모션 데이타로부터 아바타의 행동을 학습시키는 새로운 방법을 제안한다. 이 방법을 사용하면 최소의 실시간 비용으로 아바타를 애니메이션하고 제어하는 것이 가능하다. 본 논문에서 제시하는 알고리즘은 Q-러닝이라는 기계 학습 기법에 기초하여 아바타가 동적인 환경과의 상호작용에 따른 시행착오를 통해 주어진 상황에 어떻게 반응할지 학습하도록 한다. 이 접근 방식의 유효성은 아바타가 서로 간에, 그리고 사용자에 대해 상호작용하는 예를 보임으로써 증명한다.
본 논문에서는 지능형 IoT (internet of things) 미러 시스템을 통해 사용자의 우울증 예방을 위한 인터랙티브 콘텐츠 서비스를 구현한다. 인터랙티브 콘텐츠 서비스를 위해 IoT 미러 장치는 뇌파 헤드셋 디바이스로부터 집중도 및 명상도 데이터를 측정하고, 웹캠을 통해 다층 퍼셉트론 알고리즘으로 분류된 "슬픔", "분노", "혐오감", "중립", "행복" 및 "놀람"과 같은 표정 데이터를 측정한 후, oneM2M 표준을 준용한 IoT 서버로 전송한다. IoT 서버에 수집된 데이터는 제안한 병합 레이블링 과정을 거쳐 세 가지의 우울 단계(RED, YELLOW, GREEN)를 분류하는 기계학습 모델을 생성한다. 실험을 통해 k-최근접 이웃 모델로 우울 단계를 분류한 결과 약 93%의 정확도를 얻을 수 있었고, 분류된 우울 단계에 따라 가족, 친구 및 사회복지사에게 소셜 네트워크 서비스 에이전트를 통해 알림 메시지를 전송하여 사용자와 보호자 간의 인터랙티브 콘텐츠 서비스를 구현하였다.
온톨로지는 특정 개념에 대한 부가정보 및 개념간의 관계를 기술하는 방법으로서 고차원의 웹과 서비스를 실현하기 위한 시멘틱 웹, 그리고 지식관리 시스템을 비롯한 다양한 응용분야의 요구와 관심이 증가하면서 그 중요성이 대두되고 있다. 온톨로지에서 정보에 대한 접근은 특정 개념과 특정 관계를 가지는 데이타를 찾는 것이 주를 이루는데, 이러한 관계가 주로 트랜지티브 관계이기 때문에 트랜지티브 질의를 처리하는 것이 많은 비중을 차지한다. 또한 이와 같은 트랜지티브 클로저 질의 처리는 재귀호출의 형태로서 그 처리 비용 또한 매우 크다. 본 논문에서는 이와 같은 트랜지티브 클로저 질의의 효율적 처리를 지원하기 위한 방법으로써 그래프 레이블링을 이용한 전처리 기법을 제안한다 이 기법은 저장 공간을 효율적으로 사용하고 알고리즘도 단순한 특징을 가지기 때문에 트랜지티브 클로저 질의에 대한 응답 시간을 줄이는 장점을 가지게 된다. 그리고 이와 같이 제안한 기법에 대해 기존 시스템들과 비교해 봄으로써 그래프 레이블링을 이용한 기법이 대용량 온톨로지에서의 트랜지티브 클로저 질의 처리에 효율적임을 보이고자 한다.
본 논문은 스크린과 레이저 발사장치의 이격거리 변화에도 복수 개의 레이저 영상을 안정적으로 인식할 수 있는 최근접 각도 계산 방법을 제안하였다. 이 방법은 레이저 패턴 각도의 거리를 이용하여 사로를 인식하는 방법으로 레이저의 각도 추출은 레이블링 알고리즘을 이용하여 획득된 영상으로부터 레이저 영상을 검출하고, 허프 변환을 수행하여 직선의 각도를 추출한다. 유사성 척도 중 유클리드 거리를 이용하여 추출한 레이저 영상의 각도와 기준 각도의 거리를 계산하고, 계산된 거리 결과값을 이용하여 사로를 인식한다. 이격 거리를 "200cm~400cm"로 변경하면서 실험한 결과, 모든 이격 거리에서 개별 사로를 100% 인식했다. 실험을 통해 제안한 방법의 신뢰성을 확인하였다.
P&ID(Piping and Instrument Diagram)는 플랜트의 장치 및 계장 정보를 집약적으로 담고 있는, 엔지니어링 핵심도면이다. 한 장의 P&ID에는 심볼로 표현된 수백 여개의 정보들이 존재하며, 이에 대한 디지털 전산화 작업이 수작업으로 진행되고 있어 많은 인력과 시간이 소요된다. 기존 연구들은 CNN 모델을 이용하여 도면 객체 검출에 성공하였으나, 도면 한 장당 약 30분, 인식률은 90% 정도로 현장에서 구현하기에는 부족한 성능이다. 따라서 본 연구에서는 영역 검출과 객체 인식을 동시에 처리하는 1-stage 객체 검출 알고리즘을 제안하였다. 이미지 레이블링 오픈소스 툴을 이용하여 학습 데이터를 구축하고 딥러닝 모델 학습을 통해 도면 내 심볼 이미지 인식 방법을 제안한다.
이미지에 레이블을 부착하는 레이블링은 객체 탐지를 수행하기 위해서는 반드시 선행되어야 하며 이러한 작업은 딥러닝 모델을 구축하는 데 있어서 큰 부담으로 여겨지고 있다. 딥러닝 모델을 훈련하기 위해서는 수 만장의 이미지가 필요하며 이러한 이미지에 인간 레이블러가 직접 레이블링을 진행하기에는 많은 한계가 있다. 이러한 어려움을 극복하기 위해 본 연구에서는 전체 이미지가 아닌 일부 이미지에 대한 레이블링을 통해서도 큰 성능의 저하 없이 객체 탐지를 수행하는 방안을 제안한다. 구체적으로 본 연구에서는 저품질 동양화 이미지의 객체 탐지를 위해 초고해상화 알고리즘을 이용하여 저해상도의 이미지를 고화질의 이미지로 변환하고, 이 과정에서 도출되는 SSIM과 PSNR이 객체 탐지의 mAP에 미치는 영향을 분석하여 객체 탐지 분석에 필요한 레이블링을 위한 최적의 샘플링을 수행하는 방안을 제안한다. 본 연구의 결과는 이미지 레이블링을 필요로 하는 이미지 분류, 객체 검출, 이미지 분할 등 딥러닝 모델 구축에 크게 기여할 수 있을 것으로 기대한다.
자연영상에 내포되어 있는 문자는 다양한 내용을 표현하는 중요한 정보이다. 기존의 문자 검출 알고리즘은 영상의 복잡도와 주변의 조명, 문자와 유사한 배경색 등의 환경에서 문자영역을 검출하지 못하는 문제점이 있으므로 본 논문에서는 에지 및 형태학적 재구성에 의한 연결요소를 이용한 자연영상에 포함된 문자영역을 검출하는 방법을 제안한다. 첫 번째 단계로, 명암도 영상에서 캐니에지(Canny-Edge) 검출기를 이용한 에지 성분과 형태학적 연산에 의한 지역적 최소/최대값을 갖는 연결요소를 검출하고, 각각 검출된 연결성분을 레이블링하고, 레이블링 된 각 성분에 대해 문자가 갖는 특징을 이용한 후보 문자영역을 검출한다. 마지막으로 검출된 후보 문자 영역을 서로 합병하여 하나의 후보 문자 영역을 생성하고, 후보 문자 영역의 인접성과 유사성으로 후보 문자 영역을 검증하여 최종 문자 영역을 검출한다. 실험결과 제안한 에지 및 연결요소 성분을 이용한 방법은 문자영역 검출의 정확성이 개선되었다.
도시 지역에서 객체를 탐지하기 위해 드론 고해상도 영상에 기계 학습 알고리즘을 적용하는 다양한 연구가 진행되었다. 그러나 대부분의 차량 추출 연구는 인스턴스 세그멘테이션 대신 경계 박스로 차량을 탐지하여 차량의 방향이나 정확한 경계를 알 수 없다는 한계점이 있다. 인스턴스 세그멘테이션은 개별 개체를 훈련하기 위한 노동 집약적인 레이블링 작업을 필요로 하므로, 차량 추출을 위해 자동 무감독 인스턴스 세그멘테이션을 수행하는 방법에 대한 연구가 필요하다. 따라서 본 연구에서는 드론 영상의 차량 경계 박스에 대해 무감독 SVM 분류 기반의 차량 추출 기법을 제안하였다. 연구 결과, 차량을 89% 정확도로 추출할 수 있음을 확인하였으며 차량 내의 분광 특성이 크게 다른 경우에도 차량을 추출할 수 있음을 확인하였다.
최근, 신경망 모델의 적응성과 학습성을 이용한 음성인식 연구가 진행되어 왔다. 그러나, 기존의 신경망 모델로는 한국어 음성의 조음결합의 처리 및 유사 음소간의 경계 분류가 용이하지 않다. 또한, 한 개의 형상지도를 이용하는 경우 이질적인 음성자료의 처리를 위한 학습속도의 급격한 증가와 균일한 학습 및 판별방법의 적용이 갖는 부정확성이 야기될 수 있다. 이에따라, 본 논문에서는 계층적 자기조직화 분류기(HSOC)를 이용한 신경망타자기를 설계하고, 관련 알고리즘들을 제안한다. 본 HSOC는 Kohonen의 자기조직화형상지도(SOFM)를 이용하여 학습시 입력되는 음소 데이타를 계층적인 구조를 갖는 다수의 형상 지도(map) 즉 음성자판에 배치한다. 또한 본 논문에서는 자판의 수효, 각 자판의 크기, 소속될 음소의 선택과 배치, 적합한 학습 및 인식기법의 자동 결정을 위한 알고리즘을 제시하고 실험하여 자기조절식인 음성자판을 구성하였다. 자판을 분류하는 방식을 언어학적 사전지식에 의존할 경우 언어학적 지식의 습득과 적용방법(예를 들면, 확장 음소의 처리)등을 결정하는 어려움을 가지는 반면, 본 HSOC를 이용하면 주어진 입력 데이타에 적합한 다수의 음성자판을 자기 조절식으로 구성할 수 있는 장점이 있다. 제안된 방식에 따라 최종 생성된 세 개의 한글 음성자판은 최적 자판과 최적 전처리기법을 갖추고있으며, 기존의 언어학적 지식과도 부합됨을 확인할 수 있었다.
객체 분할 방식은 객체를 먼저 분할한 후, 검출된 객체에 대해 해충 검출 알고리즘을 적용하므로 해충 개체를 검출하는 데 필요한 처리 비용이 줄어드는 장점이 있다. 본 논문에서는 페로몬 트랩 영상에서 해충 검출을 위한 객체 분할 방법을 제안한다. 제안한 방법은 전처리, 문턱치 처리, 형태학적 필터링, 레이블링 처리로 구성된다. 이들 과정 중 문턱치 처리는 객체 분할의 성능을 좌우하는 매우 중요한 처리 과정이다. 제안한 방법은 문턱치 처리 과정에서 해충 영상의 국소적 특성을 반영하므로 매우 정교한 문턱치 처리를 할 수 있다. 과수원에 설치된 페로몬 트랩에서 수집된 복숭아심식나방 영상에 대해 Otsu의 방법의 전역적 방식과 국소적 방식, 그리고 제안한 방법으로 처리한 결과, 제안한 방법이 조명과 배경의 특성을 잘 반영함을 알 수 있었다. 페로몬 트랩에 수집된 복숭아심식나방 영상에 대해 객체 분할과 개체 분류를 수행하였다. 개체 분류는 SVM 분류기로 학습하여 사용하였다. 실험에서 제안한 방법으로 10개의 해충 영상에 대해 복숭아심식나방 검출 결과 95%의 평균 검출율을 보임으로써 과수원의 복숭아심식나방의 개체 모니터링 방법으로서 효과적임을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.