• Title/Summary/Keyword: 레이더 추정강수

Search Result 81, Processing Time 0.04 seconds

Comparison of accuracy for satellite derived precipitation (위성강수의 정확도 비교)

  • Kim, Joo Hun;Choi, Yun Seok;Kim, Kyeong Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.104-104
    • /
    • 2020
  • 강수량은 수문 순환의 결정적인 연결 고리이며 공간적, 시간적 변화는 매우 크며, 또한 전 세계적인 범위의 강수량 자료는 지구상의 수문 순환에 대한 이해와 날씨 및 기후 예측을 위해 필요하다. 그리고 지역적 강수량에 대한 지식은 사회 복지에 필수적이다. 지상에 있는 강우관소에서 관측된 강우는 본질적으로 강우의 공간적 불균일성을 반영하기 어려우며, 관측 주기가 하루 이상으로 긴 경우에는 홍수와 연계한 생태-수문학 연구에 적용하는데 한계가 있다. 또한, 지상계측 방법은 해양, 극지방 및 산악지역의 강수량을 관찰하는데 어려움이 있다. 이에 반하여 원격탐사 기술은 지구 강수를 관찰하는데 많은 도움을 주는 기술로 인식되고 있다. 위성자료를 이용한 강우 추정은 지상 강우관측소 및 기상레이더와 비교하여 광역적 공간범위를 대상으로 하며, 지속적이고 균일한 강우를 생산한다는 장점을 갖고 있다(Hong et al. 2016). 위성강우 자료는 일반적으로 전 세계 강수량에 대한 지식과 글로벌 수문순환에 대한 연구를 촉진하고 있으며, 특히, 동아시아, 동남아시아, 아프리카 등지에는 수문학적 미계측 지역이 많기 때문에 위성강우 자료를 이용한 강수량 평가에 대한 연구가 다수 진행되고 있다(Hoscilo et al., 2015; Dembélé et al., 2016; Dandridge et al., 2019; Kim et al., 2019; Yuan et al., 2019). 본 연구는 위성으로부터 유도된 강수자료 중 NASA의 IMERG, NOAA의 CMORPH, 그리고 일본 JAXA의 GSMaP의 위성강우자료와 국내의 ASOS 시간강우자료의 비교를 통해 위성강우의 정확도를 평가하는 것을 목적으로 하고 있다. 분석 결과 총강우에 대한 편이는 그림 1에서 보는바와 같이 CMORPH가 가장 작고 가장 최근에 제공되기 시작한 IMERG 강수자료가 가장 큰 것으로 분석되었다. 지상계측강우와의 상관계수는 1시간 및 3시간의 시간해상도에서 2019년 18호 태풍 미탁(Mitak)의 경우 IMERG 및 GSMaP 각각 0.63 및 0.60와 0.73 및 0.70으로 분석되었다.

  • PDF

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: 2. Refining the Distribution of Precipitation Amount (기상청 동네예보의 영농활용도 증진을 위한 방안: 2. 강수량 분포 상세화)

  • Kim, Dae-Jun;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • The purpose of this study is to find a scheme to scale down the KMA (Korea Meteorological Administration) digital precipitation maps to the grid cell resolution comparable to the rural landscape scale in Korea. As a result, we suggest two steps procedure called RATER (Radar Assisted Topography and Elevation Revision) based on both radar echo data and a mountain precipitation model. In this scheme, the radar reflection intensity at the constant altitude of 1.5 km is applied first to the KMA local analysis and prediction system (KLAPS) 5 km grid cell to obtain 1 km resolution. For the second step the elevation and topography effect on the basis of 270 m digital elevation model (DEM) which represented by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) is applied to the 1 km resolution data to produce the 270 m precipitation map. An experimental watershed with about $50km^2$ catchment area was selected for evaluating this scheme and automated rain gauges were deployed to 13 locations with the various elevations and slope aspects. 19 cases with 1 mm or more precipitation per day were collected from January to May in 2013 and the corresponding KLAPS daily precipitation data were treated with the second step procedure. For the first step, the 24-hour integrated radar echo data were applied to the KLAPS daily precipitation to produce the 1 km resolution data across the watershed. Estimated precipitation at each 1 km grid cell was then regarded as the real world precipitation observed at the center location of the grid cell in order to derive the elevation regressions in the PRISM step. We produced the digital precipitation maps for all the 19 cases by using RATER and extracted the grid cell values corresponding to 13 points from the maps to compare with the observed data. For the cases of 10 mm or more observed precipitation, significant improvement was found in the estimated precipitation at all 13 sites with RATER, compared with the untreated KLAPS 5 km data. Especially, reduction in RMSE was 35% on 30 mm or more observed precipitation.

Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases (강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계)

  • Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.586-591
    • /
    • 2014
  • In this study, we introduce Radial Basis Function Neural Networks(RBFNNs) classifier using Artificial Bee Colony(ABC) algorithm in order to classify between precipitation event and non-precipitation event from given radar data. Input information data is rebuilt up through feature analysis of meteorological radar data used in Korea Meteorological Administration. In the condition phase of the proposed classifier, the values of fitness are obtained by using Fuzzy C-Mean clustering method, and the coefficients of polynomial function used in the conclusion phase are estimated by least square method. In the aggregation phase, the final output is obtained by using fuzzy inference method. The performance results of the proposed classifier are compared and analyzed by considering both QC(Quality control) data and CZ(corrected reflectivity) data being used in Korea Meteorological Administration.

Downscaling climate simulation using spatio-temporal random cascade model in Korea region (시공간적 Random Cascade 모형을 이용한 한반도지역 기후모의 상세화기법)

  • Kwon, Jin-Wook;Kang, Boo-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.120-124
    • /
    • 2008
  • 본 연구에서는 대기대순환모형(GCM) 모의결과를 활용하여 한반도 지역의 강수량과, 온도에 대하여 분위사상법(Quantile mapping)과 상세화기법(downscaling)을 적용하였다. GCM 모의자료는 캐나다기후센터(CCCma; Canadian Centre for Climate Modeling and Analysis)의 CGCM2 A2, B2시나리오의 $2001{\sim}2100$년 자료를 사용하였으며, GCM 모의결과값과 국내관측값과의 계통적오차(systematic bias)를 보정하기 위하여 분위사상법을 적용하였다. 강수자료의 경우 한반도의 강수특성을 반영하기 위하여 홍수기, 비홍수기로 구분지어 감마분포를 이용하였고, 온도자료의 경우 계절적 특성을 반영하기 위하여 봄/가을, 여름, 겨울로 구분지어 표준정규분포를 이용하여 분위사상법을 적용하였다. 강수자료의 경우 과거($1965{\sim}1989$:25개년)의 31개소의 일평균강우 자료를, 온도자료의 경우 과거($1965{\sim}1989$)의 11개소의 일평균온도 자료를 사용하였다. 이러한 분위사상법의 적용으로 GCM 모의결과값과 관측값사이의 계통적오차를 보정하였으며, 그 결과 강수자료의 홍수기의 경우 모의결과값과 관측값의 차이가 3.79mm/day에서 0.62mm/day로, 비홍수기의 경우 0.24mm/day에서 0.02mm/day로 각각 83%, 92% 보정된것을 확인하였으며, 각각의 확률분포 매개변수를 추출하였다. Random Cascade 모형의 자기유사성 및 무작위 변동성계수를 추정하기 위하여 2002년 8월 6일 00:10부터 8월 9일 24:00까지 432장의 레이더 스캔을 사용하여 스케일분석을 실시하였으며, 모형적용결과 연평균 강우량의 변화는 A2의 경우 797.89mm에서 1297.09mm로 B2의 경우 815.02mm에서 1383.93mm로 나타났다.

  • PDF

Uncertainty Propagation and Quantification in Climate Change Impact Assessment for Hydrology (수자원분야 기후변화 영향평가에서의 불확실성 전파와 정량화)

  • Lee, Jae-Kyoung;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.15-15
    • /
    • 2015
  • 기존 기후변화 영향평가 불확실성 연구들은 거의 대부분 GCM의 불확실성이 가장 크다고 결론내리고 있으나, ES 불확실성과의 정량적 비교는 하지 못했으며, 기존 접근방법은 민감도 분석 수준에 머무르고 있다. 이에 본 연구에서는 기후변화 영향평가 각 단계별 불확실성을 포괄적으로 정량화하고 수행단계별 불확실성의 전파정도를 추정할 수 있는 새로운 approach를 제안하였다. 첫째, 전체 불확실성, 각 단계별 불확실성 증가 정도, 각 단계별 불확실성의 비율을 제시할 수 있는 새로운 approach를 제안하였다. 또한 불확실성을 정량적으로 추정할 수 있는 방법으로 maximum entropy(이하 ME)를 선정하였으며, 이를 본 연구에서 제시한 approach에서 적용성을 살펴보았다. 둘째, 본 연구에서는 기후변화 영향평가 불확실성 단계별 정량화를 위해 2개 배출시나리오, 4개 GCM 시나리오, 2개 상세화기법, 2개 수문모형을 사용하여 기본적 기후변화 영향평가 단계를 모두 수행하였다. 기존 approach에서는 GCMs의 변화율(89.34)이 가장 커 GCMs의 불확실성이 가장 큰 것으로 나타났으나 제시한 approach에서는 배출시나리오의 불확실성이 전체 대비 58.66 %로 기후변화 영향평가에서 가장 큰 불확실성 발생 원인으로 파악되었다. 모형 불확실성에서는 GCMs의 불확실성(전체 대비 33.57 %)이 가장 높게 나타났다. 또한 배출시나리오의 ME는 3.32, GCMs의 ME는 5.22, 상세화기법의 ME는 5.57, 수문모형의 ME는 5.66으로 단계적으로 불확실성이 증가하였다. 다음으로 유량과 강수를 이용하여 불확실성 정량화를 수행하였으며, 강수를 이용한 불확실성 정량화에서는 유량을 이용한 결과와 다르게 배출시나리오 다음으로 상세화기법의 불확실성이 큰 것으로 나타나 어떤 수문변수에 초점을 두느냐에 따라 불확실성 정량화저감 노력 대상이 달라질 수 있음을 제시하였다. 마지막으로 자연변동성에 의한 불확실성이 기후변화 전체 불확실성의 45.47 % 정도로 나타났으며, 이는 미래 기후변화에 의해 발생하는 불확실성이 과거 자연변동보다 2배 이상으로서, 기후변화에 의한 미래전망의 불확실성이 매우 크게 증가한다는 매우 중요한 결과를 제시하였다.

  • PDF

Application of Very Short-Term Rainfall Forecasting to Urban Water Simulation using TREC Method (TREC기법을 이용한 초단기 레이더 강우예측의 도시유출 모의 적용)

  • Kim, Jong Pil;Yoon, Sun Kwon;Kim, Gwangseob;Moon, Young Il
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.409-423
    • /
    • 2015
  • In this study the very short-term rainfall forecasting and storm water forecasting using the weather radar data were implemented in an urban stream basin. As forecasting time increasing, the very short-term rainfall forecasting results show that the correlation coefficient was decreased and the root mean square error was increased and then the forecasting model accuracy was decreased. However, as a result of the correlation coefficient up to 60-minute forecasting time is maintained 0.5 or higher was obtained. As a result of storm water forecasting in an urban area, the reduction in peak flow and outflow volume with increasing forecasting time occurs, the peak time was analyzed that relatively matched. In the application of storm water forecasting by radar rainfall forecast, the errors has occurred that we determined some of the external factors. In the future, we believed to be necessary to perform that the continuous algorithm improvement such as simulation of rapid generation and disappearance phenomenon by precipitation echo, the improvement of extreme rainfall forecasting in urban areas, and the rainfall-runoff model parameter optimizations. The results of this study, not only urban stream basin, but also we obtained the observed data, and expand the real-time flood alarm system over the ungaged basins. In addition, it is possible to take advantage of development of as multi-sensor based very short-term rainfall forecasting technology.

Estimation of Flood Discharge using Satellite-derived Rainfall in Abroad Watershed - A Case Study of Pasig-Marakina, Phillippines - (위성강우를 이용한 해외 유역 홍수량 추정 - 필리핀 파시그-마라키나강 유역을 대상으로 -)

  • Kim, Joo Hun;Choi, Yun Seok;Kim, Kyeong Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.398-398
    • /
    • 2018
  • OECD 발표에 의하면 물산업 관련 인프라 투자 전망은 전세계 GDP 대비 2010~2020년 약 1.01%에서 2020~2030년 약 1.03%로 확대될 전망으로 다른 통신, 전력, 철도 인프라 투자수요보다 많을 것으로 전망하고 있다(파이넨셜 뉴스, 2013.3.21.). 우리나라는 2005년 베트남 홍강종합개발사업을 시작으로 2015년 기준으로 세계 35개국에 진출하고 있다. 그러나 대부분의 물 산업 진출 대상 국가는 미계측 유역이 많고 지상에서 계측된 수문 자료가 부족한 실정이다. Namgung and Lee(2014)에 의하면 네팔의 수력발전소 건설에 관측된 강우량 자료가 없어 발전소 하류 10km 지점의 유하량 자료를 이용하여 자료의 정확도 검증을 대신하여 적용한 바 있다. 이와 같이 계측자료가 없거나 부족한 지역에 대하여 기상 위성을 이용하여 추정된 강수량 자료가 해당 지역의 강수 특성을 파악하는데 중요한 자료로 이용될 수 있다. 글로벌 위성 기반의 강수량 관측에 대한 역사는 1979년에 IR방법에 의해 위성으로부터 강우자료를 유도하는 개념이 도입된 이후 1987년 다중 채널의 마이크로파(MW) 복사계를 이용한 방법, 이후 두 IR과 MW를 혼합한 방법에서, 1997년 TRMM위성의 PR(Precpipitation Radar)의 레이더를 이용하는 방법, 그리고 2014년 GPM 핵심 위성(GPM Core Observatory)에 탑재된 Dual PR에 의한 방법으로 위성강수의 정확도를 매우 높여가고 있다. 본 연구는 KOICA 사업으로 진행중인 필리핀 메트로 마닐라 홍수조기경보 및 모니터링 체계 구축사업 중 파시그-마라키나강(Pasig-Marakina) 유역의 2012년 8월의 홍수사상에 대한 위성강우 및 글로벌 지형자료를 이용하여 홍수 유출량을 추정하는 것으로 목적으로 하고 있다. 유역내 6개 관측소의 일일 강우량 자료와 GPM IMERG 일강우량 자료 상관분석 결과 약 0.623, Bias는 -0.147, RMSE는 15.7정도로 분석되었다. 홍수량 분석은 2012년 8월 홍수가 발생한 시기인 2012년 8월 1일 00(UTC)부터 2012년 8월 16일 00(UTC)까지의 1시간 간격의 위성강우자료와 글로벌 지형자료를 이용하였고, 한국건설기술연구원의 MapWindow 기반 GRM 모형(mwGRM)을 이용하였다. 분석 결과 첨부홍수가 발생한 시기는 8월 7일 18:00(UTC)였고, 첨두 홍수량은 $4,073.9m^3/sec$로 분석되었다. 향후 수위-유량 관계식에 의해 정확도평가를 수행할 계획이다.

  • PDF

Sensitivity of Synthetic Precipitation Data According to Observation Density (관측소 밀집정도에 따른 강수량 자료복원 민감도 분석)

  • Kim, Hong-Joong;Oh, Jaiho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.138-138
    • /
    • 2016
  • 강수량은 농업과 수자원관리, 그 외 사회 기반 사업들에게 광범위하게 영향을 미치는 매우 중요한 기상요소이므로 강수량 관측자료는 사회전반에 활용되고 있다. 하지만 강수량은 공간적인 불연속성이 크기 때문에 조밀한 관측자료를 필요로 하고 있으며, 때문에 관측이 이루어지지 않은 미관측 지점의 강수량 자료를 복원하려는 연구도 계속 진행되고 있다. 관측자료를 이용하여 미관측 지점의 강수량을 복원하는 방법으로 지상 강수량 관측자료와 연직 상층기상자료 및 고해상도 지형자료를 이용하여 복원하는 정량적 강수량 진단 모형이 이미 개발되어 대한민국을 대상으로 강수량 복원이 이루어진 바 있다. 대한민국은 전국이 대략 10 km 정도로 비교적 조밀하고 일정한 지상 관측망을 가지고 있어 관측자료를 이용한 강수량 복원에 유리하다. 하지만 전 세계 많은 지역에서 강수량 관측자료는 매우 부족한 실정이며 가깝게는 북한과 중국에서부터 아프리카와 남아메리카 등 일부 강수량 관측이 전혀 이루어지지 않는 지역도 존재한다. 이러한 지역에 대한 강수량 복원 정확도에 대해서는 지금까지 연구된 바 없으며 관측자료 수에 따른 복원 민감도에 대한 연구도 이루어지지 않았다. 따라서 대한민국에 비해 관측자료가 부족한 지역에 대해 복원 정확도를 파악할 필요성이 있으므로 본 연구에서는 관측소 밀집정도에 따른 미관측 지역의 강수량 복원 민감도 분석을 하였다. 대한민국은 572개 지점의 지상기상관측망(자동기상관측장비 AWS 477개, 종관기상관측장비 ASOS 95개 지점)을 운영하고 있으며, 10개 지점의 기상레이더가 전국을 감시하고 있어 미관측 지점에 대해 검증자료로 활용할 수 있으므로 강수량 복원 민감도 분석 대상 지역으로 선정하였다. 강수량 복원 정확도 검증을 위해 강수량 복원자료의 격자점과 가장 근접한 관측지점을 검증지점으로 선정하고, 강수량 복원에는 검증지점을 제외한 관측자료만을 이용하였다. 관측자료 밀집정도에 따른 민감도 분석을 위해 관측자료를 100% 사용하였을 때와 일부만 사용하였을 때로 나누어 분석하였다. 관측소 밀집도에 따른 강수량 복원 정확도 민감성 분석을 통해 관측소가 부족한 북한, 중국, 아프리카 등지의 미관측 지점 복원 정확도를 추정할 수 있으며 관측소가 부족하거나 전무한 지역에서 강수량 복원 정확도를 늘리기 위해 필요한 관측소 수를 파악하는 데에 적용할 수 있을 것이다.

  • PDF

Assessment for Downscaling Method of TRMM Satellite Observation using PRISM Method (PRISM 기법을 이용한 TRMM 위성자료의 상세화 기법 평가)

  • So, Byung-Jin;Yoo, Ji-Young;Kim, Min-Ji;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.5-5
    • /
    • 2015
  • 현재 우리나라에서 지상관측장비인 AWS(Automatic Weather System)와 ASOS(Automated Synoptic Observing System)기구가 한반도내 668개 지점에서 운영되고 있다. 이러한 장비는 지상관측장비로 하나의 지점에서 측정된 기상변량들이 특정 영역의 대푯값으로 사용되어지고 있다. 기존의 다양한 지점 단위의 수문 모형에서는 지상관측소를 통한 관측값을 적용하기에 어려움 없이 적절한 결과를 도출할 수 있었다. 컴퓨터의 발달로 인하여 복잡한 물리적 현상을 공간적으로 분석할 수 있는 모형의 구동이 가능해짐에 따라서 수문 분야에서도 다양한 분포형 해석 모형이 활발하게 개발 및 적용되고 있다. 지점 관측 자료는 공간적인 연속성을 반영하지 못하는 한계로 인하여 지점 관측자료를 이용한 공간자료의 생성 기법들이 사용되어지고 있지만 자연계에서 나타나는 정확한 공간적 현상을 재현해주지 못하는 문제점이 존재한다. 이러한 지점 관측의 한계를 해결하기 위하여 공간적인 관측이 가능한 레이더와 위성관측과 같은 원격 관측 장비들이 개발되어 공간적으로 연속성을 갖는 기상변량의 취득이 가능하여졌다. TRMM 강우자료는 지구 전체를 0.25도 약 25km 공간해상도를 갖으며 3시간 간격으로 제공되고 있다. 유역단위의 수문모형에 적용하기에 TRMM 강수자료의 공간해상도는 너무 커서 직접적인 적용에 어려움이 있다. 이러한 점에서 TRMM 자료의 상세화 기법을 통하여 수문모형에 적용이 가능한 1km 이하의 고해상도 자료를 생산하는 연구들이 진행되고 있다. 이러한 상세화 방법은 최종적으로 도출하고자 하는 공간해상도를 갖는 대체 변량(지표면 온도, 고도, 식생, 해수면 기압, 상대 습도, 대기온도, 풍향 등)을 이용하여 회귀분석의 형태로 분석이 이루어지고 있다. 그러나 대체 변량을 통해 도출된 상세화된 TRMM 강우는 간접적인 추정으로 인하여 정확한 결과의 도출에는 한계가 있을 것으로 판단된다. 이러한 점에서 본 연구에서는 한반도내 지상 관측값을 공간적 자료로 변환하여 주는데 효과적으로 평가받는 PRISM 모형에 적용하여 기존 SVM 모형을 통한 TRMM 상세화 결과가 갖는 정확성을 평가해 보고 지점 관측자료의 보간 기법의 평가에 TRMM 자료를 활용하는 방안에 대해 평가해 보고자 한다.

  • PDF