Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1167-1171
/
2009
최근 전 세계 많은 지역에서 집중호우로 인한 홍수 피해가 증가하고 있으며, 국내 역시 홍수 피해가 증가하는 추세이다. 이러한 집중호우로 인한 홍수의 피해를 줄이기 위해서는 보다 정확한 강수 예측이 선행되어야하며, 이를 위해 국내에서는 레이더와 인공위성 자료를 이용한 강수 예측기법에 대한 많은 연구가 수행되고 있다. 이러한 강수 예측기법은 공간적으로 균일한 자료를 획득할수 있고, 미계측 유역의 정보를 취득할 수 있는 장점이 있으나, 정확도측면에서 활용성에 한계가 있어 지상 관측자료를 통한 보정 후 예측에 사용하는 실정이다. 본 연구에서는 지상 관측 강우와 이류 모델을 이용한 단시간 강수예측 방법론을 제시하고, 이를 조밀한 지상 관측망을 가진 서울시에 적용하였다. 강수 예측을 위해 서울시 홍수정보시스템의 자료와 Automatic Weather System (AWS) 자료 등의 지상 관측소 자료를 이용하였다.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.1515-1519
/
2006
본 연구에서는 초단시간 강수예보(VSRF, Very Short-Range Forecast of precipitation) 시스템 구축 현황을 소개하고자 한다. VSRF 모델은 레이더 반사도 자료와 지상 AWS 자료를 이용하여 레이더-AWS 강우강도를 산출하는 강수분석과정과 분석된 강수량 자료와 중규모 수치예보장을 사용하여 외삽법에 의한 초단시간 강수예보를 수행하는 예보과정, 실시간으로 산출된 강수예보 자료를 검증하고 홈페이지에 제공하는 자료지원과정으로 구성된다. 본 연구에서는 모델의 예보능력을 향상시키기 위해 크게 두 가지 측면에서 모델을 개선하였다. 첫째는 모델의 입력자료인 레이더-AWS 강우강도 자료를 기상연구소 원격탐사연구실에서 운영하던 WPMM (Window Probability Matching Method)과 기상청 기상레이더과에서 운영하던 RQPE(Radar Quantitative Precipitation Estimation)의 알고리즘을 통합하여 정확한 강우강도 자료인 레이더-AWS 강우강도(RAR, Radar-AWS Rain rate) 시스템을 구축하여 개선하였으며, 둘째는 외삽과정을 통한 예보가 3시간이 지나면 예측능력이 감소하는 문제점을 보완하기 위해 현업 중규모 모델(RDAPS, Regional Data Assimilation and Prediction System)의 예측강수와 병합하여 모델을 개선하였다. 또한 이를 시계열 검증 및 공간 검증하는 실시간 검증 시스템을 구축하여 실시간으로 모델의 정확성을 평가하고 있다. 그 결과 입력자료 개선을 통한 모델의 정확도는 크게 향상된 결과는 볼 수 없었지만 미약하게 향상된 것을 확인할 수 있었으며, 모델의 병합을 통한 모델의 개선은 예측 3시간 이후부터는 50% 정도 향상되었다.의 대안을 제시하고자 한다.X>${\mu}_{max,A}$는 최대암모니아 섭취률을 이용하여 구한 결과 $0.65d^{-1}$로 나타났다.EX>$60%{\sim}87%$가 수심 10m 이내에 분포하였고, 녹조강과 남조강이 우점하는 하절기에는 5m 이내에 주로 분포하였다. 취수탑 지점의 수심이 연중 $25{\sim}35m$를 유지하는 H호의 경우 간헐식 폭기장치를 가동하는 기간은 물론 그 외 기간에도 취수구의 심도를 표층 10m 이하로 유지 할 경우 전체 조류 유입량을 60% 이상 저감할 수 있을 것으로 조사되었다.심볼 및 색채 디자인 등의 작업이 수반되어야 하며, 이들을 고려한 인터넷용 GIS기본도를 신규 제작한다. 상습침수지구와 관련된 각종 GIS데이타와 각 기관이 보유하고 있는 공공정보 가운데 공간정보와 연계되어야 하는 자료를 인터넷 GIS를 이용하여 효율적으로 관리하기 위해서는 단계별 구축전략이 필요하다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 상습침수구역관련 정보를 검색, 처리 및 분석할 수 있는 상습침수 구역 종합정보화 시스템을 구축토록 하였다.N, 항목에서 보 상류가 높게 나타났으나, 철거되지 않은 검전보나 안양대교보에 비해 그 차이가 크지 않은 것으로 나타났다.의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.404-404
/
2011
최근 기상변동성 증가와 극치수문사상의 발생빈도 증가로 인한 기상재해가 빈번하게 일어나고 있다. 이러한 기상현상으로 인한 재해의 예방을 위해서 사전에 위험을 인지하고 그 규모를 예측할 수 있는 여러 기법들이 기상레이더 또는 수치예보자료 등을 이용하여 개발 및 적용되고 있다. 이 과정에서 해결해야 할 여러 문제점들이 있는데, 우선 수치예보자료 또는 기상레이더자료를 종관기상관측소 및 자동기상관측지점의 지상관측 강수량과 연계하여 평가하는 과정이 필요하고, 현재시점에 형성되어 있는 강우장의 공간 이동 예측 기법이 확보되어야 할 것이다. 전북지역은 게릴라성 집중호우가 빈번한 산악형 강수와 산지유역의 급한 하천경사가 맞물려 인명 및 재산피해가 매년 발생하고 있으며, 과거 돌발홍수가 발생한 사례가 있어 이상기후 및 기후변화로 인한 홍수 위험도가 커질 것으로 전망되고 있다. 본 연구는 전라북도의 기상재해 예측모형 개발을 위한 사전 분석과정으로 전라북도지역에서 관측된 기존의 대규모 강수사상을 이용한 강수사상의 특성 분류 및 관측소간 공간상관성을 분석하는데 목적을 두고 있다. 강수사상의 특성분류를 통해 강수 발생형태에 따른 기상학적 영향인자, 강수의 발생량 및 이동특성 예측의 정도를 향상시킬 수 있으며, 분류 기법으로 SVM(support vector machine)을 이용한 자동분류를 적용한다. 또한 관측소간 공간상관성 분석을 위하여 각 관측소 강수량간의 조건부 확률을 이용한다. 예로써 부안관측소에 강수가 발 생했을 때, 부안관측소의 강수량 조건에 의한 전주관측소 강수량 확률을 다음과 같이 구성할 수 있다. �揚滑斂�수량�咀刮활�수량��. 공간상관성 분석과정에서 관측소간 강수 이동시간에 따른 강수 발생 시간의 차이 또한 고려하며, 과거 기상관측 자료의 분석을 통해 전라북도지역의 관측소간 강수발생의 공간적 상관성을 규명하고, 단기예측 모델 개발을 위한 기초자료로 활용할 수 있을 것이다. 또한, 기후변화시나리오에 의한 미래 강수량의 지역적 상세화 과정에도 본 연구를 통한 결과를 이용할 수 있을 것이라 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.64-64
/
2022
이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.8-8
/
2015
기후변화에 따른 집중호우 및 태풍 발생의 증가로 강우레이더를 이용한 홍수예경보시스템의 필요성이 증대되고 있다. 그러나 현재 국내에서 주로 활용되고 있는 단일편파 레이더는 정확도의 한계로 인해 홍수예보 활용에 어려움을 야기해왔다. 최근에는 수직반사도, 차등반사도, 비차등반사도 등 다양한 변수 취득을 통해 강우입자의 형태를 더욱 정확하게 추정할 수 있는 이중편파 레이더의 활용이 높아지고 있다. 본 연구에서는 홍수예보 활용을 위해 이중편파 레이더 실황강우 및 예측강우의 정확도를 평가하고자 한다. 평가를 위해 비슬산 레이더 자료를 활용하였으며, 2012~2014년의 강우사상을 선정하였다. 단일 및 이중편파 레이더 강우를 각각 추정하고, 강우예측을 위해 추정된 레이더 강우를 이류모델(Translation model)에 연계하여 선행 6시간까지의 예측강우를 생산하였다. 강우의 탐지능력 평가를 위해 Hit rate를 이용하였으며, 레이더 관측반경 증가 및 강우강도의 증가에 따른 정확도 분석을 수행하였다. 강수추정 정확도 평가를 위해 상관계수와 평균제곱근 오차를 이용하였으며, 비슬산 강우레이더 100 km 반경 내에 속한 국토교통부 관할의 지상관측강우와비교하였다. 그 결과, 이중편파 레이더 실황강우가 단일편파 레이더에 비해 지상관측강우의 거동과 더욱 유사하게 나타났으며, 양적인 오차도 더 적은 것으로 확인되었다. 또한, 레이더 예측강우는 선행시간이 증가함에 따라 정확도가 감소하였으나, 선행시간 1시간까지는 활용이 가능하다고 판단된다.
Wan Sik Yu;Kyoung Pil Kim;Shin Uk Kang;Seong Sim Yoon
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.277-277
/
2023
최근 기후변화의 영향으로 호우의 발생빈도가 증가하고 있는 추세이며, 도시지역의 호우는 돌발적이고 국지적인 특성을 가지고 있어 인명과 재산피해 역시 증가하고 있으며, 급격한 도시화로 인한 구조적으로 홍수에 취약한 실정이다. 국지성 도시호우는 저층(1 km 내외)에서 형성되는 강우가 지배적이며, 기존의 대형레이더는 높은 산 정상에 설치되어 1.5 km 이상의 강우관측을 중심으로 운영됨에 따라 저층강우의 탐지 및 변동성 관측에 취약하여, 이에 대형 레이더에서 뿐만 아니라 도시단위의 국지성 호우관측에 대응할 수 있는 소형 레이더 기반 고정밀 강우관측 마련 및 운영 기술이 필요하다. 현재 K-water는 부산 에코델타 스마트시티에 도시 물재해 플랫폼 구현의 일환으로 돌발강우사전 탐지 및 도시의 신속·정확한 강우 관측을 위하여 높은 시공간 해상도를 제공하는 이중편파X 밴드 소형 강우레이더를 설치하고, 효율적 운용을 위해 각 고도각에서의 빔 차폐율을 확인하고 이를 고려한 최적 관측전략을 수립하였다. 또한 Z-Phi 방법을 이용한 반사도 감쇠 보정 기술을 개발하였으며, 강우 추정을 위해 하이브리드 고도면 합성 기법(HSR) 기법을 적용하고 검증하였다. 이후 소형 레이더의 정량적 추정강수를 이용하여 강우예측 정보를 생산하기 위해 이류모델을 적용하고, 비슬산과 소형 합성 레이더 추정강수로 선행 10분에서 180분까지 예측할 수 있도록 개발하였다. 또한, 지상강우관측 자료와의 정확도 비교 평가를 수행하고, 행정구역 및 표준유역의 예측 평균강우량을 생산하여 부산 에코델타 스마트시티 도시 물재해 통합관리 시스템과 연계운영을 위한 후속 과업을 수행중에 있다.
In Korea, heavy rainfall is mainly induced by the Changma front or frontal system passed over Korea periodically. Both its unknown mesoscale characteristics and the lack of direct measurements make it difficult to predict precipitation reasonably. To understand its 3-dimensional structure, initiation and development mechanism of precipitation in that system will be very helpful to forecast it more accurately. A meteorological radar is specially useful because it produces direct measurement with high resolution in time and space. In this study, representative frontal system is selected and analyzed specially focused on its vertical structure using radar data. Results shows that there are convective cells with horizontal scale of 10 - 20 km in precipitation system. Melting layer located between 3 and 5 km height, maximum fall speeds of rain drops were seen just below bright band.
In this study, we developed a multi-sensor blending short-term rainfall forecasting technique using radar and satellite data during extreme rainfall occurrences in Busan and Gyeongnam region in August 2014. The Tropical Z-R relationship ($Z=32R^{1.65}$) has applied as a optimal radar Z-R relation, which is confirmed that the accuracy is improved during 20mm/h heavy rainfall. In addition, the multi-sensor blending technique has applied using radar and COMS (Communication, Ocean and Meteorological Satellite) data for quantitative precipitation estimation. The very-short-term rainfall forecasting performance was improved in 60 mm/h or more of the strong heavy rainfall events by multi-sensor blending. AWS (Automatic Weather System) and MAPLE data were used for verification of rainfall prediction accuracy. The results have ensured about 50% or more in accuracy of heavy rainfall prediction for 1-hour before rainfall prediction, which are correlations of 10-minute lead time have 0.80 to 0.53, and root mean square errors have 3.99 mm/h to 6.43 mm/h. Through this study, utilizing of multi-sensor blending techniques using radar and satellite data are possible to provide that would be more reliable very-short-term rainfall forecasting data. Further we need ongoing case studies and prediction and estimation of quantitative precipitation by multi-sensor blending is required as well as improving the satellite rainfall estimation algorithm.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.100-100
/
2023
단기 강우 예측에는 주로 물리과정 기반 수치예보모델(NWPs, Numerical Prediction Models) 과 레이더 기반 확률론적 방법이 사용되어 왔으며, 최근에는 머신러닝을 이용한 레이더 기반 강우예측 모델이 단기 강우 예측에 뛰어난 성능을 보이는 것을 확인하여 관련 연구가 활발히 진행되고 있다. 하지만 머신러닝 기반 모델은 예측 선행시간 증가 시 성능이 크게 저하되며, 또한 대기의 물리적 과정을 고려하지 않는 Black-box 모델이라는 한계점이 존재한다. 본 연구에서는 이러한 한계를 극복하기 위해 머신러닝 기반 blending 기법을 통해 물리과정 기반 수치예보모델인 Weather Research and Forecasting (WRF)와 최신 머신러닝 기법 (cGAN, conditional Generative Adversarial Network) 기반 모델을 결합한 Hybrid 강우예측모델을 개발하고자 하였다. cGAN 기반 모델 개발을 위해 1시간 단위 1km 공간해상도의 레이더 반사도, WRF 모델로부터 산출된 기상 자료(온도, 풍속 등), 유역관련 정보(DEM, 토지피복 등)를 입력 자료로 사용하여 모델을 학습하였으며, 모델을 통해 물리 정보 및 머신러닝 기반 강우 예측을 생성하였다. 이렇게 생성된cGAN 기반 모델 결과와 WRF 예측 결과를 결합하는 머신러닝 기반 blending 기법을 통해Hybrid 강우예측 결과를 최종적으로 도출하였다. 본 연구에서는 Hybrid 강우예측 모델의 성능을 평가하기 위해 수도권 및 안동댐 유역에서 발생한 호우 사례를 기반으로 최대 선행시간 6시간까지 모델 예측 결과를 분석하였다. 이를 통해 물리과정 기반 모델과 머신러닝 기반 모델을 결합하는 Hybrid 기법을 적용하여 높은 정확도와 신뢰도를 가지는 고해상도 강수 예측 자료를 생성할 수 있음을 확인하였다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.78-78
/
2015
조기에 홍수 위험을 예측하고, 빠르게 이동 또는 진화하는 강수 사상을 추적하기 위해서는 높은 시간 해상도의 실시간 강우 생산이 필요하다. 레이더는 순간 강우강도를 측정하기 때문에, 긴 시간 간격의 관측 주기는 빠르게 움직이는 폭풍의 레이더 QPE에 상당한 샘플링 오차가 발생하기 쉽다. 따라서 본 연구에서는 레이더 관측주기에 따른 강우량의 정량적 차이에 대한 검증을 실시하였다. 본 검토는 2013-2014년 한국건설기술연구원(KICT) X-Band 이중편파레이더로 관측된 사상을 대상으로 하였다. 최소 관측주기(관측전략에 따른 최소 관측주기)를 토대로 샘플링을 하여 긴관측주기 자료를 생산하였다. 비교결과, 약 5분 관측주기에서도 5 % 이상의 차이를 보이는 경우가 상당수 있었다. 이 결과를 토대로 보면 도시홍수 관측을 위해서는 대략 1-2분 정도의 관측주기를 유지해야 하는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.