• Title/Summary/Keyword: 레이더 신호

Search Result 546, Processing Time 0.027 seconds

레이더

  • 이원길
    • The Magazine of the IEIE
    • /
    • v.15 no.1
    • /
    • pp.48-56
    • /
    • 1988
  • 전술 목적으로 세계 각국의 군에서 많이 사용하고 있는 레이더에 대하여, 그동안의 발전 과정을 고찰해 보고, 현재 각국 군에서 운용중인 레이더를 사용 목적별로 분류, 설명했으며, 2000년대를 향한 앞으로의 기술적인 발전 방향을 검토해 보았다. 레이더의 발전 역사를 초창기, 1940년대, 1950년대, 1960년대, 1970년대, 1980년대 별로 분류하여, 각 연대 별로 레이더에 관련된 기술이나 주요 개발 내용을 기술 했으며, 현재 사용중인 레이더를 지상 레이더, 함정 레이더, 항공기 레이더, 비 군사적 사용 분야별로 나누어 검토해 보았다. 그리고 끝으로 레이더의 기술적인 발전 방향을 레이더의 체계, 안테나, 송수신기, 신호처리 분야별로 핵심기술의 발전 추세를 개괄적으로 분석, 기술하였다.

  • PDF

연근해 소형 어선의 레이더 정보수록 및 해석 시스템 개발 - CFAR에 의한 레이더 잡음 억제-

  • 이대재;김광식;신형일;변덕수;강희영
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.10a
    • /
    • pp.35-38
    • /
    • 2003
  • 현재, 세계 여러나라에서 해상물표를 정확하게 탐지 및 검출하기 위한 방안으로 레이더 clutter 신호를 효과적으로 억제 및 제거하기 위한 연구가 활발하게 진행되고 있다. 일반적으로 레이더 반사파에 대한 envelope 신호의 진폭는 Rayleigh 분포에 따라 변동하는 특성을 나타내지만, clutter의 진폭분포의 파라 메터가 변동하여 분포형상이 변화하면, 오경보확률(false alarm probability)에도 변화가 발생하기 때문에 오경보확률을 충분히 낮은 일정치로써 억제시켜 일정오경보확률(constant false alarm rate, CFAR)을 유지하는 처리가 필요하다. (중략)

  • PDF

An Information Fusion of Radar and Electronic Intelligence System with Direction Data (방향자료를 이용한 레이더와 전자정보 장비의 정보융합)

  • Lim, Joong-Soo;Choi, Chang-Min;Kim, Sang-Kyu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.242-244
    • /
    • 2006
  • 본 논문에서는 레이더와 전자정보에서 획득한 방향정보 자료를 이용해서 전자파 정보를 융합하는 기술을 제시한다. 레이더에서 획득한 표적신호와 전자정보에서 획득한 정보신호를 융합하면 표적을 정확하게 확인할 수 있기 때문에 레이더의 탐지 오차율이 줄어들고 표적에 대한 상세 정보를 확보할 수 있어서 표적식별이나 목표물 선정에 쉽게 사용할 수 있다.

  • PDF

Rainfall Estimation by X-band Marine Radar (X밴드 선박용 레이더를 이용한 강우 추정)

  • Kim, Kwang-Ho;Kwon, Byung-Hyuk;Kim, Min-Seong;Kim, Park-Sa;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.695-704
    • /
    • 2018
  • The rainfall cases were identified by rainfall estimation techniques which were developed by using X - band marine radar. A digital signal converter was used to convert the signal received from the marine radar into digital reflectivity information. The ground clutter signal was removed and the errors caused by beam attenuation and beam volume changes were corrected. The reflectivity showed a linear relationship with the rain gauge rainfall. Quantitative rainfall was estimated by converting the radar signal into an cartesian coordinate system. When the rainfall was recorded more than $5mm\;hr^{-1}$ at three automatic weather stations, the rain cell distribution on the marine radar was consistent with that of the weather radar operated by Korea meteorological Adminstration.

A Detection Algorithm for Modulation Types of Radar Signals Using Autocorrelation Comparison Ranges (자기상관 비교 범위를 활용한 레이더 신호의 펄스 변조 형태 검출 알고리즘)

  • Kim, Gwan-Tae;Ju, Youngkwan;Jeon, Joongnam
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.137-143
    • /
    • 2018
  • Generally, a radar signal is modulated and transmitted in order to avoid signal detection. In electronic warfare, the specification of a radar is recognized by analysing the received radar pulses. In this paper, we propose an algorithm to recognize the PRI (Pulse Repetition Interval) type of radar signals. This algorithm uses the autocorrelation technique applying different comparison ranges according to the PRI type. It applies a short comparison window to stable and staggered PRI, and a relatively large comparison range to jittered PRI. The experiment shows that the proposed algorithm can discriminate the PRI type of radar pulses correctly. For the more, it can find out the stagger level of staggered type of radar signals.

A Development of the High-Performance Signal Processor for the Compact Millimeter Wave Radar (소형 밀리미터파 레이더를 위한 고성능 신호처리기 개발)

  • Choi, Jin-Kyu;Ryu, Han-Chun;Park, Seung-Wook;Kim, Ji-Hyun;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.161-167
    • /
    • 2017
  • Recently, small radar has been reduced in size and power consumption to cope with various operating environments. It also requires the development of a small millimeter wave radar with high range resolution to disable the system of target with a single strike. In this paper, we design and implement a signal processor that can be used in small millimeter wave radar. The signal processor for the small millmeter wave radar is designed with a digital IF(Intermediate Frequency) receiver and DFT(Discrete Fourier Transform) module capable of real time FFT operation for miniaturization and low power consumption. Also it was to leverage the FPGA(Field Programmable Gate Array) and DAC(Digital Analog Converter) as a means for correcting the distortion of signals that can occur in the receive path of the small millimeter wave radar to create a RF signal that is used by the system. Finally, we verified the signal processor presented through performance test

The analysis of the detection probability of FMCW radar and implementation of signal processing part (차량용 FMCW 레이더의 탐지 성능 분석 및 신호처리부 개발)

  • Kim, Sang-Dong;Hyun, Eu-Gin;Lee, Jong-Hun;Choi, Jun-Hyeok;Park, Jung-Ho;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2628-2635
    • /
    • 2010
  • This paper analyzes the detection probability of FMCW (Frequency Modulated Continuous Wave) radar based on Doppler frequency and analog-digital converter bit and designs and implements signal processing part of FMCW radar. For performance evaluation, the FMCW radar system consists of a transmitted part and a received part and uses AWGN channel. The system model is verified through analysis and simulation. Frequency offset occurs in the received part caused by the mismatching between the received signal and the reference signal. In case of Doppler frequency less than about 38KHz, performance degradation of detection does not occur in FMCW radar with 75cm resolution The analog-digital converter needs at least 6 bit in order not to degrade the detection probability. And, we design and implement digital signal processing part based on DDS chip of digital transmitted signal generator for FMCW radar.

Clutter Suppression Method for Altitude and Mainlobe Clutter In Moving Platform Radar (이동 플랫폼 레이더에서 고도 클러터와 주엽 클러터 억제 기법)

  • Jeon, Hyeonmu;Bae, Chang-sik;Yang, Hoon-gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1386-1391
    • /
    • 2018
  • The radar in the moving platform is interfered by the mainlobe clutter as well as the altitude clutter that is received from sidelobe. The altitude clutter is relatively short range compared to mainlobe clutter and therefore enters the radar with a strong signal. As these clutters are major reason making the probability of false alarm high, it is required to suppress both altitude clutter and mainlobe clutter. In this paper, It is proposed the clutter suppression method consisted of two pulse canceller to suppress the clutters being two frequency area in moving platform. It is analyzed the correlation of output signals according to the use of pulse canceller and provided the structure of staggered pulse canceller considered the correlation. Finally, it shows that altitude clutter and mainlobe clutter are suppressed by proposed staggered pulse canceller using the simulation.

A Study on the Relationship between Meteorological Condition and Wave Measurement using X-band Radar (X-밴드 레이더 파랑 계측과 기상 상태 연관성 고찰)

  • Youngjun, Yang
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.517-524
    • /
    • 2022
  • This paper analyzes wave measurement using X-band navigation (ship) radar, changes in radar signal due to snowfall and precipitation, and factors that obstruct wave measurement. Data obtained from the radar installed at Sokcho Beach were used, and data from the Korea Meteorological Administration and the Korea Hydrographic and Oceanographic Agency were used for the meteorological data needed for comparative verification. Data from the Korea Meteorological Administration are measured at Sokcho Meteorological Observatory, which is about 7km away from the radar, and data from the Korea Hydrographic and Oceanographic Agency are measured at a buoy about 3km away from the radar. To this point, changes in radar signals due to rainfall or snowfall have been transmitted empirically, and there is no case of an analysis comparing the results to actual weather data. Therefore, in this paper, precipitation, snowfall data, CCTV, and radar signals from the Korea Meteorological Administration were comprehensively analyzed in time series. As a result, it was confirmed that the wave height measured by the radar according to snowfall and rainfall was reduced compared to the actual wave height, and a decrease in the radar signal strength according to the distance was also confirmed. This paper is meaningful in that it comprehensively analyzes the decrease in the signal strength of radar according to snowfall and rainfall.

Numerical Analysis of the Ground Penetrating Radar's Return Signal for Mine Detection at Various Frequencies and Soil Conditions (다양한 주파수 및 토양 조건에서 지뢰 탐지용 지표투과레이더 수신신호의 수치해석)

  • Hong, Jin-Young;Ju, Jung-Mung;Han, Seung-Hoon;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1412-1415
    • /
    • 2012
  • Return signals of a ground penetrating radar(GPR) for mine detection at various frequencies and soil moisture contents are analyzed in this paper. We first compute the dielectric constant, conductivity and attenuation loss based on clay loam which is Korea standard soil. The mine-detection images of GPR at various frequencies are also obtained using the finite-difference time-domain(FDTD) technique. Then, the signal-to-clutter ratio(SCR) and received power of the radar are studied. It is shown that the variable frequency channels are suitable for a GPR to detect landmines at various soil conditions.