Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.193-193
/
2020
집중호우로 인한 이재민 발생, 침수 등 많은 인명 및 재산 피해가 지속적으로 발생함에 따라, 홍수재해를 사전에 대응하는 다양한 방법에 대한 관심이 증가하고 있다. 본 연구에서는 레이더 반사도를 이용하여 강우의 이동방향과 이동속도를 추정하여 초단기 정량강우예측(QPF)이 가능한 기법을 개발하고, 2016년 태풍 차바 사상에 대하여 비슬산 레이더자료를 이용하여 분석을 실시하였다. 개발기법은 1단계 레이더 강우강도 앙상블 멤버 생성, 2단계 레이더 강우강도 이동속도 계산, 3단계 레이더 강우강도 앙상블 초단기 예보, 4단계 초단기 예보 검증의 과정으로 이루어진다. 본 연구결과물인 레이더 기반 초단기 강우예측자료는 수치예보기반 강우예측자료 및 다양한 레이더 기반 초단기예보자료들과 함께 강우예측율 향상에 기여할 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.100-100
/
2018
본 연구에서는 집중호우에 대한 레이더기반 초단기 강우예측 시스템의 정확도를 향상시키기 위해 초기장 개선 연구를 수행하였다. 집중호우에 적합한 강우를 추정하기 위해 층운형, 대류형, 열대형의 Z-R관계식과 반사도 조건에 따라 층운형과 적운형을 구분하여 Z-R 관계식을 적용하였으며, 이를 초단기 강우예측 시스템의 초기장으로 활용하였다. 또한 2016년 10월 5일 태풍 차바(Chaba)에 의한 집중호우 사례에 대해 지상관측 강우자료와 레이더 추정 및 예측 강우자료와의 비교를 통해 정확도를 정성적 정량적으로 평가하였다. 레이더 강우추정에 대한 분석 결과, 복합형 타입의 Z-R 관계식의 상관계수와 평균제곱근오차가 비슬산레이더의 경우 각각 0.8207, 9.22 mm/hr, 면봉산 레이더의 경우 각각 0.8001, 10.53 mm/hr로 가장 좋은 성능을 보였다. 강우 예측에 대한 분석 결과, 집중호우 사례에 대해 강우강도 공간분포 및 이동 패턴은 평균적으로 잘 모의하였으며, 초단기 강우예측 결과의 평균적으로 POD는 0.97이상, FAR는 0.21 이하로 다소 정확하게 예측하는 것으로 분석되었다. 정량적 평가 결과, 비슬산 레이더의 경우 상관계수가 예측시간 60분까지 0.545이상, 면봉산 레이더의 경우 0.379 이상으로 비교적 좋은 상관성을 보였으며, Z-R관계식 유형에 따른 차이는 작은 것으로 확인되었다. 평균제곱근오차의 경우 열대형과 복합형의 Z-R관계식이 높은 정확도를 가지는 것으로 확인되었다. 본 연구 결과, 초기장 정확도의 개선을 통한 레이더 기반 초단기 강우예측 모형의 정확도 개선 가능성을 확인할 수 있었으며, 향후 지속적인 사례연구 및 검증을 통하여 강우추정 및 강우예측 알고리즘 개선의 노력이 필요하다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.8-8
/
2015
기후변화에 따른 집중호우 및 태풍 발생의 증가로 강우레이더를 이용한 홍수예경보시스템의 필요성이 증대되고 있다. 그러나 현재 국내에서 주로 활용되고 있는 단일편파 레이더는 정확도의 한계로 인해 홍수예보 활용에 어려움을 야기해왔다. 최근에는 수직반사도, 차등반사도, 비차등반사도 등 다양한 변수 취득을 통해 강우입자의 형태를 더욱 정확하게 추정할 수 있는 이중편파 레이더의 활용이 높아지고 있다. 본 연구에서는 홍수예보 활용을 위해 이중편파 레이더 실황강우 및 예측강우의 정확도를 평가하고자 한다. 평가를 위해 비슬산 레이더 자료를 활용하였으며, 2012~2014년의 강우사상을 선정하였다. 단일 및 이중편파 레이더 강우를 각각 추정하고, 강우예측을 위해 추정된 레이더 강우를 이류모델(Translation model)에 연계하여 선행 6시간까지의 예측강우를 생산하였다. 강우의 탐지능력 평가를 위해 Hit rate를 이용하였으며, 레이더 관측반경 증가 및 강우강도의 증가에 따른 정확도 분석을 수행하였다. 강수추정 정확도 평가를 위해 상관계수와 평균제곱근 오차를 이용하였으며, 비슬산 강우레이더 100 km 반경 내에 속한 국토교통부 관할의 지상관측강우와비교하였다. 그 결과, 이중편파 레이더 실황강우가 단일편파 레이더에 비해 지상관측강우의 거동과 더욱 유사하게 나타났으며, 양적인 오차도 더 적은 것으로 확인되었다. 또한, 레이더 예측강우는 선행시간이 증가함에 따라 정확도가 감소하였으나, 선행시간 1시간까지는 활용이 가능하다고 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.64-64
/
2022
이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.185-185
/
2021
기후변화로 인한 돌발 강우 등 이상 기후 현상이 증가함에 따라 정확한 강우예측의 중요성은 더 증가하는 추세이다. 전통적인 강우예측의 경우 기상수치모델 또는 외삽법을 이용한 레이더 기반 강우예측 기법을 이용하며, 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 개발되고 있다. 기존 머신러닝을 이용한 강우예측 모델의 경우 주로 시계열 이미지 예측에 적합한 2차원 순환 신경망 기반 기법(Convolutional Long Short-Term Memory, ConvLSTM) 또는 합성곱 신경망 기반 기법(Convolutional Neural Network(CNN) Encoder-Decoder) 등을 이용한다. 본 연구에서는 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용해 미래 강우예측을 수행하도록 하였다. GAN 방법론은 이미지를 생성하는 생성자와 이를 실제 이미지와 구분하는 구별자가 경쟁하며 학습되어 현재 이미지 생성 분야에서 높은 성능을 보여주고 있다. 본 연구에서 개발한 GAN 기반 모델은 기상청에서 제공된 2016년~2019년까지의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시키고, 2020년 레이더 이미지 자료를 이용해 단기강우예측을 모의하였다. 또한, 기존 머신러닝 기법을 기반으로 한 모델들의 강우예측결과와 GAN 기반 모델의 강우예측결과를 비교분석한 결과, 본 연구를 통해 개발한 강우예측모델이 단기강우예측에 뛰어난 성능을 보이는 것을 확인할 수 있었다.
Heo, Jae-Yeong;Yoon, Seong Sim;Lim, Ye Jin;Bae, Deg-Hyo
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.128-128
/
2022
최근 호우의 빈도와 규모는 증가하는 추세이며 이에 따른 홍수 피해는 많은 피해를 야기하고 있다. 이러한 관점에서 홍수 피해에 대한 선제적 대응을 위한 요소로써 초단시간 강우예측 정보의 중요성은 매우 높다. 특히, 레이더 자료 기반의 강우예측은 수치예보모델과 비교하여 3시간 이내의 짧은 선행시간 이내의 높은 정확도를 갖고 있어 홍수예보에 다수 활용되고 있다. 최근에는 강우자료의 복잡한 관계와 특징을 고려하기 위해 딥러닝 기반의 강우예측 활용 사례가 증가하고 있으나 국내 적용 사례는 적어 관련 연구가 요구되는 실정이다. 본 연구에서는 레이더 강우를 활용한 딥러닝 기반의 강우예측 기법을 제안하고 이에 대한 적용성을 평가하고자 한다. 2차원 레이더 강우자료의 특징과 시계열 특성을 고려하기 위한 심층신경망 구조를 제안하였으며 기존 딥러닝 모형과의 비교를 통해 활용 가능성을 제시하고자 하였다. 적용 대상지역은 한강 유역으로 선정하였다. 정성적 평가를 위해 임계성공지수(CSI)를 활용하여 예측 강우에 대한 정확도를 평가하였으며 정량적 평가를 위해 예측 강우와 관측 강우의 상관관계를 분석하였다. 평가 결과, 제안하는 방법이 기존 모형과 비교하여 예측오차의 범위가 적고 강우의 위치 변화를 잘 반영하는 것으로 나타났다. 본 연구결과는 초단기간 강우예측 자료를 활용하는 홍수예보의 정확도 향상에 기여할 것으로 기대된다.
The frequency and size of typhoon and local severe rainfall are increasing due to the climate change and the damage also increasing from typhoon and severe rainfall. The flood forecasting and warning system to reduce the damage from typhoon and severe rainfall needs forecasted rainfall using radar data and short-term rainfall forecasting model. For this reason, this study examined the applicability of short-term rainfall forecast using translation model with weather radar data to point out that the utilization of flood forecasting in Korea. This study estimated the radar rainfall using Least-square fitting method and estimated rainfall was used as initial field of translation model. The translation model have verified accuracy of forecasted radar rainfall through the comparison of forecasted radar rainfall and observed rainfall quantitatively and qualitatively. Almost case studies showed that accuracy is over 0.6 within 4 hours leading time and mean of correlation coefficient is over 0.5 within 1 hours leading time in Kwanak and Jindo radar site. And, as the increasing the leading time, the forecast accuracy of precipitation decreased. The results of the calculated Mean Area Precipitation (MAP) showed forecast rainfall tend to be underestimated than observed rainfall but the correlation coefficient more than 0.5. Therefore it showed that translation model could be accurately predicted the rainfall relatively. The present results indicate that possibility of translation model application of Korea just within 2 hours leading forecasted rainfall.
Kim, Ho-Jun;Uranchimeg, Sumiya;Ryou, Minsuk;Kwon, Hyun-Han
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.276-276
/
2021
최근 댐과 같은 수공구조물의 건설로 대규모 홍수피해는 급격히 줄어들었지만, 돌발홍수(flash flood)로 인한 저지대 침수 등의 도시홍수 발생빈도가 급증하고 있다. 2020년에는 최장의 장마가 관측되었으며, 전국적으로 홍수로 인한 침수피해가 발생하였다. 홍수에 선제적으로 대응하기 위해서 신뢰성 있는 홍수예·경보가 필요하며, 이를 위해서는 신속하고 정확성있는 강우예측이 선행되어야 한다. 이에 본 연구에서는 초단기 강우예측을 목적으로 둔 레이더 기반의 강우앙상블 예측모형을 개발하였다. 라그랑지안 지속성(Lagrangian persistence)을 기반으로 개발하였으며, 강우장의 이동 패턴은 이류특성을 활용해 추정하였다. 즉, 강우장의 예측정확도를 향상시키기 위해 공간적 규모별 캐스캐이드(cascade) 방법으로 분리해 이동 경로를 추정하였다. 예측시간에 따른 강우량은 각 캐스캐이드에 자기회귀모형을 적용하였다. 레이더 강우량은 2016-2020년 사이에 발생한 강우사상에 대한 환경부 홍수통제소에서 제공한 레이더 합성장을 이용하였다. 예측강우량에 대한 평가는 RMSE, Pearson's Correlation, FSS 등 통계치를 통해 수행하였다. 본 연구에서 소개된 강우예측 모형은 초단기 홍수예측에 정확도 높은 강우 정보를 제공할 수 있으며, 이에 따라 홍수피해를 저감하는데 도움이 될 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.99-99
/
2018
기상이변으로 인해 국지성 호우의 발생 증가와 그로 인한 수재해 피해가 증가하고 있다. 따라서 수재해를 사전에 예측하고 저감하기 위해 비구조물적 대책인 실시간 홍수예보시스템 개발 및 운영에 관한 연구들이 수행되고 있다. 일반적으로 홍수예보시스템은 대피선행시간 확보를 위해서 초단시간 혹은 단기 수치예보모델을 수문해석모형이나 예보기법의 입력으로 활용하고 있다. 초단시간 예측은 기상레이더를 기반으로 외삽, 이류, 셀 추적 등의 기법을 활용하여 0~3시간 이내의 강수예측을 수행한다. 그러나 역학이나 물리적 과정이 동반되지 못하여 0~ 2시간 이내에서의 예측성은 높은 반면, 예측시간이 길어질수록 예측력이 낮아진다. 단기수치예보모델은 종관관측에 의존하면서 역학이나 물리과정을 동반하므로 0~6시간 혹은 12시간 이상의 예측을 수행하지만, 수치모델의 고유특성인 스핀업 등의 예측 불확실성이 내재되어 있어 예측 초기시간에서의 예측력이 낮은 한계가 있다. 따라서 강수예측의 정확도 향상을 위해 레이더와 수치예보모델의 병합기법이 필요하다. 본 연구에서는 통계분석을 통해 경험적으로 산출된 시간적 가중치를 이용한 기존 병합기법의 한계를 극복하면서 호우에 따른 가변성을 반영하는 실시간 병합기법을 개발하고, 수문학적인 활용성을 평가하고자 하였다. 사용된 예측강우 자료는 레이더 기반인 MAPLE, KONOS, 공간규모분할 예측강우와 수치예보모델 기반인 UM와 ASAPS의 예측강우이며, 제시한 가중치 산정기법은 직전 예측강우의 오차가 현 시점의 예측강우의 오차와 유사하다는 가정하에 오차항을 포함한 과거 1시간 예측강우들간의 가중치 조합이 과거 지상관측강우와의 평균제곱근오차가 최소가 되도록 화음 탐색법을 이용하여 찾는 것이다. 가중치 조합은 예측강우의 생산 시간 간격을 고려하여 매 10분마다 산정하며, 미래 3시간 예측까지 산정된 가중치를 적용한다. 수도권 영역을 대상으로 병합된 예측강우와 레이더 관측강우를 비교한 결과, 정량적 정확도가 향상됨을 확인할 수 있었다. 또한, 예측강우의 수문학적 활용성은 도시유출해석모의를 통해 평가하였다. 그 결과, 병합된 예측강우로 모의된 수심이 관측수심과 유사하여 수문학적 활용성 확인할 수 있었다.
Jang, Sang Min;Yoon, Sun Kwon;Park, Kyung Won;Yhang, Yoo Bin
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.226-226
/
2016
최근 이상기상현상과 기후변화로 인하여 국지적인 집중호우의 빈도 및 규모가 증가하고 있으며, 이로 인한 돌발 홍수피해가 증가하고 있다. 이러한 홍수 피해를 줄이기 위해서는 정확도가 우수한 초단시간(1~2시간 이내) 예측 강우량 정보가 필요하다. 본 연구에서는 집중호우에 대한 초단시간예보 및 실황 예측을 위해 시공간적으로 고해상도 자료를 제공할 수 있는 기상레이더 강우자료와 위성영상 자료를 결합하여 초단기 강수 예측기법 개발 연구를 수행하였다. 또한 기상레이더 강우량은 지상강우관측에 비해 정확성이 낮고, 많은 불확실성을 포함하고 있으므로, 위성영상에서 산출되는 강우자료와 결합하여 강우추정의 정확도를 개선하고자 하였다. 레이더 볼륨자료에서 반사도 자료를 추출하여, 1.5km CAPPI(Constant Altitude Plan Position Indicator) 자료를 생성하고, 반사도 CAPPI 자료의 패턴 상관분석을 통하여 강우시스템의 최적 이동벡터를 산출하였다. 또한 이동벡터를 고려하여 시공간적으로 외삽하여 강우이동 예측 모델을 개발하고, 초기자료로 레이더와 천리안 위성(Communication, Ocean and Meteorological Satellite, COMS) 영상자료에서 생성되는 강우자료를 결합한 강수장 자료를 이용하여 강수 예측장을 생성하였다. 레이더-위성 결합 초단기 강우예측 모델의 정확성 검증을 위하여 2014년 8월 25일 부산 및 영남 지역에 발생한 집중호우 사례에 대하여 지상기상자동관측시스템(Automatic Weather System, AWS) 강우 측정 결과를 비교 분석 하였으며, 그 적용 가능성을 검증하였다. 초단기 강우예측 분석 결과 지상강우자료와의 오차가 발생하나, 추후 여러 통계적 후처리 과정을 통하여 그 성능이 개선될 것으로 보이며, 보다 정확한 강우량 예측을 위해서는 지속적인 알고리즘 개선 및 모형의 검 보정이 필요할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.