• Title/Summary/Keyword: 레이더 강수추정

Search Result 81, Processing Time 0.036 seconds

Improvement of Hydrologic Accuracy for Radar-derived Rainfall Estimation (기상 레이더 추정강수의 수문학적 정확도 개선)

  • Bae Deg-Hyo;Yoon Seong-Sim;Kim Jin-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.562-566
    • /
    • 2005
  • 본 연구에서는 레이더 자료의 수문학적 적용성에 대한 정확도를 개선하고자 기상현업에서 운영하고 있는 관악산 도플러 레이더 자료를 활용하여 POD(Probability of Detection) 분석을 통해 레이더 오자료를 제거하고, 편차 보정기법을 적용하여 레이더 추정강수의 정확도를 개선시켜 이들의 수문학적 적용성을 검토하였다. 이를 위해 다양한 관측 고도각 별로 POD 분석을 수행한 결과 낮은 확률의 POD($p_l$)와 높은 확률의 POD($p_h $)의 범위가 변화하고, 레이더로부터 약 150 km 이상 떨어진 지역에서는 $1.95^{\circ}$ 이상의 고도각에서 탐지한 레이더 에코가 강수 추정에 유용하지 않음을 알 수 있었다. 또한 소양강유역을 대상으로 관측 강우량보다 과소추정되는 Marshall-Palmer 관계식의 레이더 추정강수를 편차 보정기법으로 실시간으로 보정하여 그 정확도를 향상시켰다. 보정된 레이더 추정강수를 HEC-1에 적용하여 유량해석을 수행한 결과, 보정된 레이더 추정 강수를 이용한 모의치와 관측유량사이에 매우 높은 상관성을 보이고 있음을 알 수 있었다. 따라서 편차 보정기법을 통해 보정된 레이더 강수는 수문학적 분석을 위한 입력자료로 유용하게 사용될 수 있을 것으로 판단된다.

  • PDF

Improvement of Hydrologic Accuracy for Radar-derived Rainfall Estimation in Urban Watershed (도시유역에서의 레이더 추정강수의 수문학적 정확도 개선)

  • Yoon, Seong-Sim;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1958-1962
    • /
    • 2007
  • 본 연구에서는 레이더 추정강수를 도시유역의 수문학적 분석에 활용하고자 레이더 추정강수의 정확도를 개선을 위한 연구를 수행하였다. 이를 위해 WPMM(Window Probability Matching Method)과 Least-Square Fitting 방법을 적용하여 2003년 6월 $11{\sim}12$일의 강우사례에 대해 레이더 강수를 산정하였으며, 산정된 결과에 편차보정기법을 적용하여 레이더 추정강수를 보정하였다. 또한 이를 이용하여 도시하천인 중랑천 유역의 시단위 유역평균 강우량을 산정하고, 도시유출 모형인 SWMM모형을 이용하여 수문학적 적용성 및 정확도 개선현황을 살펴보았다. 그 결과, 도시유출해석에 있어서 WPMM 방법을 통해 유출모의를 수행한 결과가 AWS 관측강우를 적용한 것보다 좋은 결과를 보였으며, 특히 실시간 보정된 WPMM의 레이더 추정강수를 이용한 유출모의를 수행한 결과 관측유량과 유사하게 모의를 수행하여 실시간 보정된 레이더 강우의 유출 활용성이 좋은 것으로 판단되었다.

  • PDF

Rainfall estimation and Hydrometeor classification with the NIMR X-POL radar (연구용 X-band 이중편파 레이더를 이용한 강수정량추정 및 대기수상체 분류 사례분석)

  • Kang, Mi-Young;Nam, Kyung-Yeub;Heo, Sol-Ip;Choi, Jae-Cheon;Choi, Young-Jean
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.277-277
    • /
    • 2012
  • 국립기상연구소(National Institute of Meteorological Research; NIMR)는 기상청 이중편파 레이더 현업운영에 대비하여 2009년 X-band 연구용 이중편파 레이더를 도입하였고, 편파변수의 산출과 대기수상체 분류를 포함한 강수추정 등의 효용 가능성에 대한 연구를 지난 2년간 수행하고 있다. 이중편파 레이더는 반사도( )뿐만 아니라 차등반사도($Z_R$), 비차등 위상($K_{DP}$), 상관계수($_v$)등의 편파 변수의 산출로 강우감쇠보정과 기상에코-비기상의 에코(ground clutter, insects, birds, chaff)의 구별이 가능하다. 이러한 장점들을 이용해 레이더 자료품질 개선과 정량적 강수추정의 상당한 개선에 도움이 된다. 본 연구에서는 강수추정 관계식 R-Z, 감쇠 보정된 R-Z, R-$K_{DP}$ 관계식을 이용하여 레이더 관측 반경 내에 존재 하는 81개의 지상 우량계 자료와 강수량 추정의 정확도 비교 검증을 실시하였다. 그리고 Fuzzy logic 기법을 이용한 대기수상체 분류 알고리즘을 사용하였고 관측사례는 2011년 수도권 관측을 통해 강설/강수 에코 구별과 우박에코 사례를 분석하였다. 본 연구를 통해 이중 편파 레이더에서 산출된 고품질의 레이더기상자료를 기반으로 현업 예보지원 및 정량적 강우예측 향상에도 기여할 것으로 사료된다.

  • PDF

Development of the Radar Precipitation Bais Correction and Precipitation Ensemble Generation Technique (레이더 강수자료 편의보정 및 강수앙상블 생산기법 개발)

  • Kim, Tae-Jeong;Kwon, Jang-Gyeong;Lee, Dong-Ryul;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.17-17
    • /
    • 2017
  • 최근 기후변화로 인한 국지적인 돌발성 위험기상 및 집중호우의 발생빈도가 증가로 인한 기상재해의 규모가 대형화되고 있다. 이러한 기상재해 및 위험기상의 대비를 위하여 시공간적으로 고해상도를 갖는 레이더 강수자료가 수공학분야에 널리 활용되고 있다. 하지만 기상레이더는 대기 중에 존재하는 수상체로부터 반사되는 반사도를 사용하여 강수량을 산정하므로 지상 강수자료와 시공간적 오차가 존재하며 레이더-반사도 관계식을 적용하더라도 과소추정의 문제가 발생하게 된다. 과소추정의 문제를 해결하기 위하여 편의보정기법을 적용한 레이더 강수자료에는 여전히 관측과정에서 발생할 수 있는 무작위 오차(random error)에 대한 불확실성이 존재하게 된다. 따라서 본 연구에서는 과소추정의 문제를 개선하고 레이더 강수자료의 시공간적 오차구조 규명이 가능한 정량적 강수량 추정기법을 개발하였다. 이를 위해 다변량 분석기법을 사용하여 레이더 강수자료의 시공간적 오차구조를 반영할 수 있는 무작위 오차(random error)를 확률론적으로 발생할 수 있는 레이더 강수앙상블 모형을 개발하였다. 개발된 모형으로부터 생산된 레이더 강우앙상블은 통계적 효율기준 분석결과 우수한 모형성능을 확인하였으며 극치호우 및 강우시계열 패턴 분석결과 지상강우의 특성을 효과적으로 재현하는 것을 확인하였다. 최종적으로 도시유역 및 미계측유역의 강우-유출모형에 입력 자료로 활용하여 홍수자료를 생산할 수 있는 레이더기반 홍수예보 시스템을 개발하고자 한다.

  • PDF

A Study on Stochastic Radar Rainfall Estimation (추계학적 레이더 강수산정에 관한 연구)

  • Kim, Jin-Hoon;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.311-315
    • /
    • 2007
  • 본 연구에서는 칼만필터(Kalman filter) 개념을 도입한 추계학적 편차보정 기법을 활용하여 실시간으로 레이더 및 관측강우에 대한 불확실성을 줄일 수 있는 레이더 최적강수 산정기법 개발에 관한 연구를 수행하였다. 개발된 레이더 강우량 추정기법은 한강유역을 대상으로 적용되었으며, 여기서 사용된 레이더 자료는 기상청에서 수집한 레이더 합성 CAPPI(Constant Altitude Plan Position Indicator) 자료이다. 자료기간은 2004년 7월 및 2006년 7월의 각 한달치 10분 간격의 레이더 자료가 사용되었고, 본 기간에 대응하는 약 130여개 지점의 기상청 AWS(Automatic Weather Station) 강우 관측자료가 편차보정을 위해 사용되었다. 매개변수별 편차추정 분석을 수행한 결과, 한강유역의 주어진 자료기간에 대한 적절한 편차추정을 위해 N=10, $i_T=2mm/h$의 매개변수를 선정하여 레이더 강수추정 오차에 대한 편차를 계산하여 개발 보정기법을 적용하였다. 그 결과 본 연구에서 개발한 추계동역학적 편차보정 기법은 Marshall-Palmer 기법의 높은 편차를 1에 가깝게 줄일 수 있는 것으로 나타났고, 홍수기 급박한 재해상황에서 보다 신속히 레이더 강수장을 제공할 수 있는 현업적 보정기법으로써의 유용성이 매우 높은 것으로 평가되었다.

  • PDF

Estimation of The Observation Errors on Rainfall Radar Measurement by Dual-polarization Parameters Optimization Technique (편파변수 최적화 기법에 의한 강우레이더 강우량 관측오차의 추정)

  • Hwang, Seok Hwan;Yoon, Jungsoo;Kang, Narae;Noh, Huiseong;Han, Myoungsun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.208-208
    • /
    • 2018
  • 본 연구에서는 비슬산 강우레이더 관측반경 내 표준유역별 정규화오차 정확도를 이용하여 강우량, 유역특성 등 강우레이더 관측의 수문학적 평가요소와의 상관 특성을 분석하였다. 이를 분석하면 강우레이더 관측 오차 또는 정확도가 수문학적 특성에 따라 얼마나, 어떻게 발생하는지를 추정할 수 있고, 이를 이용하여 홍수예보에 활용되는 입력 자료의 오차를 유역단위로 명확히 정량화 할 수 있어 보다 정확하고 신뢰도 높은 홍수예보에 도움이 될 것으로 기대된다. 강수량 크기와 강수추정 정확도 간의 상관 특성을 분석하기 위해 표준유역 평균 최대 강수량과 강수추정 정확도 간의 분포특성을 분석하였다. 단기간의 자료를 분석하여 오차특성을 정규화 하기는 매우 어렵기 때문에 본 연구에서는 비슬산 강우레이더로 관측된 2012년에서 2016년(5년)사이의 236개 강우사상에 대하여, 동기간의 기상청 AWS 지점 강우량을 기준으로 비슬산 강우레이더의 정규화오차 정확도(1-NE)를 산정한 후 이를 이용하여 850개 표준유역 별 유역평균 정규화오차 정확도를 재산정 하였다. 분석결과 표준유역 평균 최대강수량과 정규화오차 정확도 간에는 유의한 상관성이 있는 것으로 나타났다. 표준유역 평균 최대강수량의 크기에 따라 정규화오차 정확도가 상대적으로 일정한 경향이 나타났고 후처리 단계에서의 편파변수 최적화 이후에는 레이더 강수추정의 정규화오차 정확도가 표준유역 평균 최대강수량 크기에 상관없이 일정해 지는 것으로 나타났다. 따라서 이러한 일정한 레이더 강수추정의 정규화오차 정확도는, 편파변수 최적화에 의해 관측 가능한 최대 기대 정확도 수준 도달에 도달했다고 볼 수 있으며, 표준유역에서 강우레이더의 강수추정 기대 정확도 수준은 84%(정규화오차 16%에 해당) 정도로 추정되었다.

  • PDF

A Comparative Analysis of Radar Rainfall Estimation Method (레이더 강수산정기법의 비교분석)

  • Yoon, Seong-Sim;Kim, Jin-Hoon;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.632-636
    • /
    • 2006
  • 본 연구에서는 레이더 강수를 산정하는 기법을 비교.분석하고자 하였다. 레이더 강수산정기법의 비교는 레이더 반사도를 강우강도로 변환시키는 두가지 Z-R 관계식 산정방법을 기준으로 구분하여 수행하였다. Z-R 관계식 산정방법 중 첫번째는 지상강우계와 대응되는 레이더 격자 사이의 관계를 통해서 Z-R 관계식을 산출하여 레이더 강수를 산정하는 Least-Square Fitting 방법이고, 두번째 방법은 강우량계에서 관측된 강우량과 이에 근접한 영역에서 얻은 레이더 반사도 자료 각각의 확률밀도함수를 대응시켜 Z-R 관계식을 산출하는 WPMM(Window Probability Matching Method)을 적용하는 방법이다. 이 두 방법의 비교를 위해 2003년 6월에서 8월사이의 두 강우사상을 선택하여 Z-R 관계식을 산정하였으며, 산정된 Z-R 관계식으로 추정된 레이더 강수의 기상학적 검증을 통해 정성적.정량적으로 검토하였다. 한반도 전역에 대하여 산정된 레이더 추정강수를 검토한 결과 대체적으로 정확도 및 상관성 측면에서 WPMM 방법이 Least-Square Fitting 방법보다 정확한 것으로 나타났다. 또한, 도시 유역의 홍수예경보에 적합한 레이더 강수산정기법을 파악하고자 중랑천 유역의 레이더 강수를 수문학적으로 분석한 결과 WPMM 방법이 보다 유효한 것으로 검토되었다.

  • PDF

Development of Tracking Technique Using Mass Moment of Area for Radar Rainfall (모멘트 개념을 적용한 레이더 강수량 Tracking 기법 개발)

  • Kwon, Hyun-Han;Lee, Jeong-Ju;Kim, Kyung-Tak;Kim, Byung-Sik;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.396-396
    • /
    • 2011
  • 본 연구에서는 레이더 강수량 자료를 대상으로 예측모형을 구축하기에 앞서서 강수장이 가지는 특징을 활용한 Tracking 기법을 개발하고자 한다. Tracking 기법이라 함은 시간에 따라 움직이는 강수장을 추적하는 개념이다. 최근에 태풍, Hurricane 등의 경로를 추정하기 위한 방법으로 국외를 중심으로 연구가 시작되고 있다. 본 연구에서 제안하는 방법론은 모멘트 개념을 중심으로 강수장으로부터 1차모멘트와 2차모멘트를 추정함으로써 강수장의 중심, 강수장의 이동 방향, 강수장의 폭 등 다양한 정보를 유도할 수 있다. 일단 이러한 정보들이 유도되면 이를 통해 강수장의 특성을 범주화 시킬 수 있으며 이를 예측 모델과 연결시킬 수 있을 것으로 판단된다. 격자형태의 레이더강수량으로부터 1, 2차모멘트를 추정하기 위한 식은 다음과 같다. 모멘트 추정을 통해 총 5 개의 속성을 추출할 수 있다. 즉, 위경도상의 도심과 방향의 공분산, y방향의 공분산, xy의 공분산 등을 이용하여 다음 그림과 같이 강수의 중심과 강수장의 형태를 수치적으로 추정할 수 있다. 강수장의 형태는 공분산으로부터 추정하여 타원체로 나타내었다. 이러한 과정을 통해 강수장의 중심과 모양의 Tracking이 가능하며 이를 활용한 예측모형의 개발이 가능할 것으로 판단된다.

  • PDF

Development of Radar QPF Model based on high-resolution gridded precipitation (고해상도 격자 강수자료를 활용한 레이더 QPF 모델 개발)

  • Kim, Ho-Jun;Uranchimeg, Sumiya;Jung, Min-kyu;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.442-442
    • /
    • 2022
  • 고해상도 시공간적 격자 형태의 레이더 강수는 돌발홍수(flash flood)와 같은 기상재해에 대비하기 위하여 실시간 예측정보로 활용된다. 그러나 대부분의 레이더 강수는 과소 추정되는 경향이 있어 정량적인 보정 과정인 QPE (Quantitative Precipitation Estimation)가 필요하다. 일반적으로 레이더 강수자료 보정은 지점 관측자료를 활용하지만, 본 연구에서는 지상 강수량 기반의 고해상도 격자 강수자료를 생산하여 레이더 강수자료와 직접적으로 비교하고자 한다. 이에 고도와 지형적 특성을 고려한 PRISM(Precipitation-elevation Regressions on Independent Slopes Model) 방법을 사용하여 고해상도 격자기반의 자료를 생성하였다. PRISM 방법은 고도와 지리정보를 독립변수로 갖는 회귀모형 기반의 기후인자 추정 모형이다. 생산된 고해상도 격자 강수자료와 레이더 강수자료를 QPF (Quantitative Precipitation Forecast) 모델의 입력자료로 사용하여 예측결과를 비교하였다. 해당 QPF 모델은 이류(advection)와 확률론적 섭동(stochastic perturbation)을 기반으로 하며, 강수 앙상블 자료를 생산한다. QPF 모델에 대해 투 트랙(two-track) 방법으로 생산된 예측정보를 통해 레이더 강수자료의 격자별 후처리 보정이 가능할 것으로 판단된다.

  • PDF

Uncertainty analysis of quantitative rainfall estimation based on weather radars (기상레이더 기반 정량적 강수추정에서의 불확실성 분석)

  • Lee, Jae-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.23-23
    • /
    • 2017
  • 기상레이더는 강우량을 바로 추정하지 못하는 특성으로 인해 정량적 강우산출 과정 중에 다양한 원인으로 인해 불확실성 발생 요소가 존재하나 이를 정량화하고 저감하는데 많은 어려움이 있다. 원인을 살펴보면, 첫째, 기상레이더의 관측에서부터 정량적 강우량 추정까지 일련의 과정에 대한 포괄적으로 불확실성 정량화와 분석이 이루어지지 못하며, 둘째, 전체 불확실성이 어느 정도 되는지 제시하지 못하므로 각 단계별 불확실성이 전체 불확실성 대비 어느 정도 비율이 되는지 제시하지 못한다. 마지막으로 기존 연구들은 불확실성을 줄이고자 여러 방법을 사용하고 있으나 어느 정도 효용성이 있는지 불확실성 측면에서 제시하지 못하고 있다. 따라서 본 연구에서는 Maximum Entropy(ME)와 Uncertainty Delta Method(UMD)를 이용한 접근방법을 제안하여 기상레이더를 활용하여 정량적 강우량을 추정하는 일련의 과정에서 단계별로 불확실성이 어떻게 전파되는지 추정하였다. 본 연구에서는 한반도 전역을 대상으로 2012년 여름철(6~8월)에 발생한 18개 강우사례를 이용하여 품질관리(Open Radar Product Generator 품질관리 알고리즘, fuzzy 알고리즘), 강우추정(Window Probability Matching Method, Marshall-Palmer 관계식), 후처리보정(Local Gauge Correction 기법, Gauge to Radar ratio 기법)단계만을 수행하였으며, 이 결과를 바탕으로 기상레이더 정량적 강우추정 단계별 불확실성을 정량화하였다. 정량화결과, 최종적으로 관측단계의 불확실성보다 최종 불확실성이 줄어들었으나, 강우추정 단계에서 불확실성이 증가하는 것으로 나타났다. 이는 어떤 강우추정식을 적용하느냐에 따라 레이더 강우추정결과가 매우 달라질 수 있음을 의미한다. 따라서 본 연구에서 제시한 불확실성 정량화 방법을 통하여 첫째, 전체 및 단계별 불확실성을 정량화할 수 있고, 둘째, 최종 불확실성 대비 각 단계별 불확실성을 비율을 제시할 수 있으며, 마지막으로 수행단계별로 불확실성 전파과정을 파악할 수 있다. 이는 향후 정량적 레이더 강우추정 과정에 있어서 불확실성을 발생시키는 주요 원인파악과 이에 대한 집중적인 투자를 가능하게 한다. 이러한 과정을 통하여 보다 정확한 정량적 레이더 강우추정이 가능할 것으로 판단된다.

  • PDF